Окружность пересекает стороны MP и PT треугольника MPT в точках C и D соответственно и проходит через вершины M и T. Найдите длину отрезка CP, если CD=4, а сторона PT в 1,5 раза больше стороны MT.
Вот смотри. Есть любой n-угольник. Мы в нем рисуем все возможные диагонали. В результате из каждого угла выходит n-1 отрезков к остальным n-1 углам. Но к двум соседним углам идут стороны, а к остальным диагонали. Поэтому из каждой вершины выходит n-1-2 = n-3 диагоналей. А всего диагоналей в n-угольнике будет n*(n-3) Но каждая диагональ соединяет два угла. Отрезок XY ничем не отличается от отрезка YX. Поэтому количество диагоналей надо разделить на 2. Получается: n(n-3)/2. Для 11-угольника это будет 11*8/2 = 11*4 = 44 диагонали.
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Есть любой n-угольник. Мы в нем рисуем все возможные диагонали.
В результате из каждого угла выходит n-1 отрезков к остальным n-1 углам.
Но к двум соседним углам идут стороны, а к остальным диагонали.
Поэтому из каждой вершины выходит n-1-2 = n-3 диагоналей.
А всего диагоналей в n-угольнике будет n*(n-3)
Но каждая диагональ соединяет два угла. Отрезок XY ничем не отличается от отрезка YX. Поэтому количество диагоналей надо разделить на 2. Получается: n(n-3)/2.
Для 11-угольника это будет 11*8/2 = 11*4 = 44 диагонали.