В формулировке теоремы можно выделить исходные данные (посылку, предпосылки) , и вывод.
В обратной теореме вывод и посылка меняются местами.
Это получается правильно в тех случаях, когда имеется однозначное соответствие между посылкой и выводом, то есть первое без второго не бывает, как и второе без первого.
Но есть случай формулировки когда отсутствию первого всегда соответствует отсутствие второго. Это тоже один из вариантов формулировки обратной теоремы - противоположная теорема. И при этом также есть взаимно однозначное соответствие. В обеих теоремах должен реализоваться принцип необходимости и достаточности. Свойства о которых говорится в посылке необходимы и достаточны для наличия свойств оо которых говорится в выводе, и наоборот. Это и есть вхзаимное соответстствие.
Обратная теорема
Обратная теорема, теорема, условием которой служит заключение исходной (прямой) теоремы, а заключением — условие. Обратной к О. т. будет исходная (прямая) теорема. Таким образом, прямая и О. т. взаимно обратны. Например, теоремы: "если два угла треугольника равны, то их биссектрисы равны" и "если две биссектрисы треугольника равны, то соответствующие им углы равны" — являются обратными друг другу. Из справедливости какой-нибудь теоремы, вообще говоря, не следует справедливость обратной к ней теоремы. Например, теорема: "если число делится на 6, то оно делится на 3" — верна, а О. т. : "если число делится на 3, то оно делится на 6" — неверна. Даже если О. т. верна, для её доказательства могут оказаться недостаточными средства, используемые при доказательстве прямой теоремы. Например, в евклидовой геометрии верны как теорема "две прямые на плоскости, имеющие общий перпендикуляр, не пересекаются", так и обратная к ней теорема "две непересекающиеся прямые на плоскости имеют общий перпендикуляр". Однако вторая (обратная) теорема основывается на евклидовой аксиоме параллельных, тогда как для доказательства первой эта аксиома не нужна. В Лобачевского геометрии вторая просто неверна, тогда как первая остаётся в силе. О. т. равносильна теореме, противоположной к прямой, т. е. теореме, в которой условие и заключение прямой теоремы заменены их отрицаниями. Поэтому прямая теорема равносильна теореме, противоположной к обратной, т. е. теореме, утверждающей, что если неверно заключение прямой теоремы, то неверно и её условие. Известный "доказательства от противного" как раз и представляет собой замену доказательства прямой теоремы доказательством теоремы, противоположной к обратной. Справедливость обеих взаимно обратных теорем означает, что выполнение условия любой из них не только достаточно, но и необходимо для справедливости заключения
1.Дано:
∆АВС - прямоугольный.
АВ = 4 см.
∠С = 30°
Найти:
АС.
РЕШЕНИЕ.
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> АС = 4 × 2 = 8 см.
ответ: 8 см.
2.Дано:
∆АВС - прямоугольный.
∠В = 45°
CD = 8 см (высота)
Найти:
АВ.
Решение.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠А = 90 - 45 = 45°
∠В = ∠А = 45° => ∆АВС - равнобедренный.
=> CD - медиана, высота, биссектриса.
Медиана, проведённая из прямого угла к гипотенузе равна половине гипотенузы.
=> АВ = 8 × 2 = 16 см.
ответ: 16 см
3.Дано:
∆АВС - прямоугольный.
∠А = 30°
∠ВЕС = 60°
ЕС = 7 см.
Найти:
АЕ.
Решение.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠В = 90 - 30 = 60°
∠ЕВС = 90 - 60 = 30°
Если УГОЛ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА РАВНЯЕТСЯ 30°, то напротив лежащий катет равен половине гипотенузы.
=> ВЕ = 7 × 2 = 14 см
∠АВЕ = 60 - 30 = 30°
∠АВЕ = ∠А = 30° => ∆ВЕА - равнобедренный.
=> АЕ = ЕВ = 14 см
ответ: 14 см