Расстояние от точки до прямой – это длина перпендикуляра, проведенного из данной точки к данной прямой. В правильном шестиугольнике прямая АС перпендикулярна плоскости СС1D1D. Проведем прямую СН перпендикулярно прямой С1D. Точка Н - середина диагонали квадрата СС1D1D. Значит расстояние от точки А до прямой С1D равно отрезку АН, перпендикулярному к С1D.
По Пифагору АН=√(АС²+СН²). АС=√3 (короткая диагональ правильного шестиугольника со стороной =1). СН=√2/2 (половина диагонали квадрата 1х1).
Следовательно, АН=√(3+(2/4)) = √14/2.
ответ: √14/2.
Точка F делит сторону ВС пополам, так как АF - медиана (дано).
Значит DF - медиана в прямоугольном треугольнике СDB и по своим свойствам равна половине гипотенузы, то есть равна 5см.
ответ: DF=5см.