Сумма углов треугольника = 180 °. У равнобедренного треугольника углы при основании равны.
1 вариант. Угол при вершине в 4 раза больше угла при основании.Тогда:
Каждый угол при основании - х ° Угол при вершине - 4х° х+х+4х= 180 6х=180 х=180 :6 х= 30° - каждый угол при основании 4×30°= 120 ° - угол при вершине Это будет тупоугольный треугольник. ответ: 30°,30°, 120°.
2 вариант. Угол при основании в 4 раза больше, чем угол при вершине треугольника. Угол при вершине - х ° Каждый угол при основании - 4х° 4х+4х+х= 180 9х=180 х=180 :9 х= 20° - угол при вершине 20×4 = 80° - каждый угол при основании треугольника. Это остроугольный треугольник. ответ: 20°, 80°, 80°.
Очень нечетко сформулированное условие. При пересечении трех прямых образуется 3 пары равных между собой вертикальных углов. Так как угол КАМ равен 90°, то значит прямые КL и MN взаимно перпендикулярны. Поэтому ∠KAN=∠LAN=∠MAL=∠KAM=90°. Условие "угол КАР: MAQ=4 : 5" дано для того, чтобы знать, как провести прямую PQ. ( cм. рис. 1) Если PQ проведена так как на рисунке 1, обозначим
∠KAP=4x; ∠MAQ=5x, тогда ∠KAQ=4x-90°;∠MAP=5x-90°; ∠KAQ+∠KAM+∠MAP=180°; 4x-90°+90°+5x-90°=180°. 9x=270° x=30° ∠KAP=4·30°=120°; ∠MAQ=5·30°=150°; значит ∠МАР=∠QAN=30°; ∠PАL=∠QAK=60° и ∠PАL:∠LАN=60°:90°=2:3 Условие "один из углов 80°" не выполняется.
Если прямая PQ расположена так как на рисунке 2. Аналогично случаю 1 обозначим ∠KAP=4x; ∠MAQ=5x, получаем невозможное∠KAP=4·30°=120°, а на рисунке угол ∠KAP- острый . Требуется дополнительное условие. Оно есть "один из углов 80°". Какой? Если ∠KAP=80°, тогда ∠MAQ=100° а на рисунке 2, угол ∠MAQ=180°-10°=170°.
Значит, нужен третий рисунок.
∠MAQ=80°,∠MAQ=5x. х=16° ∠KAP=4x=4·16°=64° Но тогда не выполняется условие "два других относятся как 2:3".
доказательство:рассмотрим треугольники MNL и КLN
MN=KL равен по 2 сторонам
NK=LM углу между ними
/_ LMN=/_ NKL
доказательство:MNL=KLN значит угол MNL равен 27 градусов