Ладно, это одна из "любимых" тем - тетраэдр, вписанный в куб. Я напишу решение, но вам придется разбираться и оформлять самостоятельно. а) Фигура ACB1B - правильная треугольная пирамида. В основании её равносторонний треугольник ACB1: AC = AB1 = CB1 (диагонали граней куба), и боковые ребра равны между собой BA = BC = BB1; (это просто стороны куба). Это означает, что точка B проектируется на плоскость ACB1 в центр треугольника ACB1 - точку O. (ну, у равностороннего треугольника все центры совпадают, можете выбирать, какой именно центр, но по логике это центр описанной окружности). То есть, BO перпендикулярно плоскости ACB1. Фигура ACB1D1 - тоже правильная треугольная пирамида, причем у неё равны между собой все ребра (все ребра этой пирамиды - диагонали граней куба). Поэтому D1O перпендикулярно плоскости ACB1; (аналогично предыдущему абзацу). Поскольку через точку O можно провести только один перпендикуляр к плоскости ACB1, точки B, O, D1 лежат на одной прямой, перпендикулярной плоскости ACB1, что и требовалось доказать. б) Легко видеть, что прямая C1D перпендикулярна плоскости A1D1C (в этой плоскости еще и точка B лежит), потому что C1D перпендикулярна D1C и A1D1 (A1D1 перпендикулярная грани CC1D1D). Точно также прямая A1D перпендикулярная плоскости AD1C1 (тоже, кстати, проходящей через точку B). Поэтому (внимание! это - решение!) угол между плоскостями равен углу между прямыми A1D и C1D. Поскольку треугольник A1DC1 - равносторонний, искомый угол равен 60°
1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения: R=3/cos 18=3/0.95=3.15 (см). Найдем сторону фигуры: a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см) ответ: 1.89 см. 2) Найдем R: R = r/cos 180/n=5/√3/2=10√3/3 (см) Длина стороны равна R, следовательно a=R=10√3/3, значит, P = 6a=10√3/3*6=20√3 (cм) или 34.64 см. ответ: 20√3 см или 34.64 см. 3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см). ответ: 30 см.
h=16
диагональ =24√2(т.к. основание квадрат)
Половина основания 12√2
По т.Пифагора: √((12√2)^2+(16^2))=√288+√256=√544=4√34