1. Используя рисунок, выразите отрезки AС и АD через тригонометрические функции углов α и β [2]
2. Две стороны прямоугольного треугольника равны: 6 см и 8 см. Найдите третью сторону треугольника. Рассмотрите все возможные случаи. [3]
3. В прямоугольном треугольнике cos α=45. Вычислите sin α, tg α и ctg α. [4]
4. В равнобедренной трапеции ABCD сторона ВС равна 5 см, высота СЕ равна 3√3 , а боковая сторона образует с основанием АD угол 60°. Найти основание AD трапеции ABCD. [5]
5. Найти углы ромба ABCD, если его диагонали АС и BD равны 4√3 м и 4 м.
. В треугольнике ABC угол C равен 90 градусов, BC=18, tgA= (4√65)/65.Найдите высоту CH.Тангенс находят делением катета, противолежащего углу, к катету прилежащемуСложность здесь в основном в вычислениях - числа довольно неудобные. tgA=BC:ACtgA=(4√65):65умножим обе части отношения на √65 и получим(4*√65):65=4:√65BC:AC=4:√654AC=BC*√65АС=(18√65):4= (9√65):2Треугольники АВС и АНС подобны по свойству высоты прямоугольного треугольника. Найдем гипотенузу АВ:АВ=√(ВС²+АС²)=√(324+81*65:4)=√(6561/4)АВ=81/2ВС:СН=АВ:АС18:СН=(81/2):{(9√65):2}18 CH=9:√65CH=18:(9:√65)=2√65