Соединив данную точку с вершинами треугольника, получим треугольную пирамиду с равными (это вытекает из условия) рёбрами. Но тогда будут равны и их проекции на плоскость треугольника и на плоскость, перпендикулярную плоскости треугольника. Так как вторые проекции лежат на прямых, проходящих через вершину пирамиды и пересекающих плоскость треугольника в одной точке (равноудалённой от вершин треугольника), то эти проекции совпадают). Но по условию через вершину пирамиды и данную точку проходит и данная в условии прямая. А это значит, что она совпадает с проекцией рёбер пирамиды на плоскость, перпендикулярную плоскости треугольника. Но эта проекция, а вместе сней и данная прямая, перпендикулярна плоскости треугольника.
По определению синус угла равен отношению противолежащего катета к гипотенузе)) нужно построить прямой угол (две перпендикулярные прямые) --это будет первая вершина треугольника, от вершины прямого угла отложить отрезок, равный 3 см (или 6 мм, или 9 метров...), обозначить вершину А --это будет вторая вершина треугольника, из точки А раствором циркуля, равным 5 см (или 10 мм, или 15 метров соответственно) провести окружность, точка пересечения окружности со второй прямой будет третьей вершиной треугольника и вершиной нужного угла (обозначить В), АВ - гипотенуза... 2) аналогично... катет равен 1 (противолежащий углу), гипотенуза = 2