АС = 22 см
Объяснение:
1) Вписанный угол АВС равен половине дуги, на которую опирается. Следовательно, дуга АС равна:
30° · 2 = 60°
2) Соединим точки А и С с центром окружности О.
∠АОС - центральный. Центральный угол равен дуге, на которую опирается, то есть ∠АОС = 60°.
3) В треугольнике АОС АО = ОС = 22 см, как радиусы окружности; следовательно, данный треугольник является равнобедренным, и углы при его основании равны:
∠ОАС = ∠АСО = (180° - ∠АОС) : 2 = (180° - 60°) : 2 = 120° : 2 = 60° - а это значит, что ΔАОС - равносторонний, так как все его углы равны 60°.
Таким образом:
АС = АО = ОС = 22 см
ответ: АС = 22 см
Один корень квадратного уравнения 3+√5, другой 3-√5, уравнение получается такое
((х-3)-√5)*((х-3)+√5)=0
(х-3)²-(√5)²=0
х²-6х+9-5=0
х²-6х+4=0 - это уравнение, у которого рациональные коэффициенты, а длины катетов являются корнями этого уравнения. Тогда площадь треугольника равна(3+√5)(3-√5)/2=(9-5)/2=2/ед. кв./
Осталось порассуждать, почему именно так подобраны коэффициенты и будет ли этот треугольник единственным.
Я думаю, что рациональные коэффициенты могли быть получены в результате произведения сопряженных корней.
Как вариант..ответ 2.