Поскольку в условиях указана только величина расстояния от центра окружности до прямой, но не указано под каким углом проведена воображаемая линия от центра до прямой, то возможны следующие варианты:
1. Прямая представляет собой касательную к окружности. В этом случае окружность и прямая будут иметь только одну общую точку, расположенную на расстоянии радиуса окружности от ее центра.
2. Прямая может пересекать окружность как угодно. В этом случае мы получим 2 точки пересечения, каждая из которых будет удалена от центра окружности на расстояние радиуса.
В нашем случае DH=DO=√3.
Или так: по Пифагору, например из треугольника ADH:
DH=√(AD²-AH²) или DH=√(4-1)=√3. (АН=0,5АС - так как DH - высота и медиана правильного треугольника АDС)
Итак, апофему нашли.
В правильной пирамиде высота из вершины проецируется в центр основания О.
В правильном треугольнике АВС высота ВН делится точкой о в отношении 2:1, считая от вершины В. Значит ОН= √3/3. (так как ВН=DH=√3).
Тогда из прямоугольного треугольника DOH найдем по Пифагору DO.
DO=√(DH²-OH²) или DO=√(3-3/9)=2√(2/3) = 2√6/3.
ответ: апофема равна √3, высота пирамиды равна 2√(2/3) или 2√6/3.