1. вк=ав/2, значит вк= 1/2, а вк перпендикульярна ад, следовательно угол а = 30 гр. (т.к. если катет равен половине гипотинузы то угол лежащий против этого катета равен 30 гр.)
Прямоугольная трапеция АВСД. АД делится пополам высотой ВН,следовательно,АН = НД. Угол А = 60 градусов,значит угол В равен 30 градусом(т.к. ВН перпендикуляр,то угол Н равен 90 градусов,а углы в треугольнике в сумме дают 180 градусов).Сторона лежащая напротив угол 30 градусов равен половине гипотинузы,значит АН равен 4(по условию большая боковая сторона равна 8,следовательно это сторона АВ). Треугольник равнобедренный и чтобы найти ВН воспользуемся теоремой Пифагора: ВН^2=АВ^2-АН^2=64-16= 48,значит ВН= корню из 48 или 4 корня из 3. Найдем площадь трапеции: СВ+АД/2*ВН=4+8/2*4 корня из 3=24 корня из 3. ответ: 24 корня из 3 см квадратных.
ответ:
объяснение:
1. вк=ав/2, значит вк= 1/2, а вк перпендикульярна ад, следовательно угол а = 30 гр. (т.к. если катет равен половине гипотинузы то угол лежащий против этого катета равен 30 гр.)
угол а=углу с, т.к. авсд - параллелограмм.
угол авк=60 гр., а
угол в = 60+90=150 гр. угол в= углу д
2.
авсд-трапеция
ад-?
из вершины с проводим перпендикуляр се
решение
ав=вс=10(за условием)
ав=се=10(по свойству)
∠е=90° ⇒ ∠д=∠с=45°⇒δсед-прямоугольный(∠е=90°)
се=ед=10 ⇒ δсед-равнобедренный
ад=ае+ед(при условии)
ад=10+10=20 см
ад=20 см
3.
дано: ромб abcd
угол а = 31°
решение:
в ромбе диагонали являются биссектрисами =>
=> 31/2=15.5 - угол оаd
диагонали пересекаются под прямым углом =>
=> угол аоd = 90°
сумма углов треугольника равна 180° =>
=> 180-90-15.5=74.5° - угол аdo
отв: 74.5°, 90°, 15.5°
4
на фото