Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
так как AD - биссектриса. Значит <DAC=(1/2)*<C. В треугольнике ADC <ADB - внешний и равен сумме двух внутренних углов, не смежных с ним, то есть <ADB=<DAC+<C или 1,5*<C=110°.
Тогда <C=110°:1,5=73и1/3°=<A, a <B=180°-146и2/3°=33и1/3° (так как сумма внутренних углов треугольника равна 180°).
ответ: <A=<C=73и1/3°, <C=33и1/3°.
P.S. Стоило в условии задачи дать <ADB=111° и мы получили бы ответ:
<A=<C=74°,a <B=32° !