пусть ad> bc , тогда острые углы равные 75 и 15 гр лежат при оснований ad , положим что y,w середины сторон ab и cd соответственно , тогда yw средняя линия трапеции , значит ad+bc=2yw из условия мы знаем что yw равна либо 15 либо 7 , положим что ab и cd пересекаются в точке e , тогда aed=180-(75+15)=90 , положим также что z,x это середины сторон основании bc,ad соотвественно , пусть n точка пересечения yw и zx , тогда по замечательному свойству трапеции точки e,z,x лежат на одной прямой , учитывая что угол aed прямой , получаем что ax=ex=ad/2 , ez=bz=bc/2 , но так как ex=ez+zx откуда окончательно получаем две системы
{ad-bc=2*7
{ad+bc=2*15
или
{ad-bc=2*15
{ad+bc=2*7
подходит решение первой системы , так как они положительны , складывая получаем ad=22 , bc=8 , значит ответ bc=8.
3√29 cм ≈ 16,16 см
Объяснение:
1) Находим высоту.
Так ка площадь треугольника равна половине произведения основания на высоту, то:
90 = (12 · H) : 2
Н = 180 : 12 = 15 см
2) В равнобедренном треугольнике высота, опущенная на основание, является его медианой, то есть делит основание пополам.
Это значит, что в прямоугольном треугольнике, образованном боковой стороной, высотой к основанию и половиной нижнего основания, боковая сторона АВ является гипотенузой, которую можно найти по теореме Пифагора:
АВ = √(6² + 15²) = √(36 + 225) = √261 = √(9 · 29) = 3√29 cм ≈ 3· 5,385 ≈ 16,16 см
ответ: боковая сторона равна 3√29 cм ≈ 16,16 см