Площадь трапеции равна произведению ее высоты на полусумму оснований. Основания известны, следует найти высоту. В условии длины оснований и боковых сторон даны в разных единицах измерения. Переведем все в дм. Сделаем рисунок трапеции и из вершин В и С опустим высоты на основание АД. Треугольники АВК и СЕД прямоугольные с равными катетами ВК и СЕ. Выразим эти катеты по т.Пифагора из треугольников, которым каждый из них принадлежит. ВК²=АВ²-АК² СЕ²=СД²-ЕД² ВК=СЕ АВ²-АК²=СД²-ЕД² Пусть АК=х, тогда ЕД=10-х-6=4-х 1,3²-х²=3,7²-(4-х)² 1,69-х²=13,69-16+8х-х² 8х=4х=0,5 ВК²=1,69-0,25=1,44см ВК=1,2дм S=1,2·(6+10):2=9,6 дм²
В соответствии с классическим определением, угол между векторами,отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда - - угол между векторами СА и СВ равен ∠АСВ=90°; - угол между векторами ВА и СА равен ∠САВ=50°; - угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Основания известны, следует найти высоту.
В условии длины оснований и боковых сторон даны в разных единицах измерения. Переведем все в дм.
Сделаем рисунок трапеции и из вершин В и С опустим высоты на основание АД.
Треугольники АВК и СЕД прямоугольные с равными катетами ВК и СЕ.
Выразим эти катеты по т.Пифагора из треугольников, которым каждый из них принадлежит.
ВК²=АВ²-АК²
СЕ²=СД²-ЕД²
ВК=СЕ
АВ²-АК²=СД²-ЕД²
Пусть АК=х, тогда ЕД=10-х-6=4-х
1,3²-х²=3,7²-(4-х)²
1,69-х²=13,69-16+8х-х²
8х=4х=0,5
ВК²=1,69-0,25=1,44см
ВК=1,2дм
S=1,2·(6+10):2=9,6 дм²