Утверждение "центр описанной окружности лежит на стороне" , верно только для прямоугольного треугольника , это середина гипотенузы , т.е. эта точка одновременно лежит на медиане проведенной из прямого угла. Этот треугольник не равнобедренный (катеты не равны) _следует из утверждения "центры вписанной и описанной окружностей не лежат ни на одной из высот треугольника" (данная медиана не совпадает с высотой) .
ответ : 3 разносторонний * * * * * * * * * * * * * * * * * * * "Центр вписанной окружности лежит внутри треугольника" ничего не дает _верно для всех типов треугольников.
Условие задачи дано с ошибкой: если в основании прямоугольного параллелепипеда квадрат, то диагональ основания составляет с боковой гранью угол 45°, а не 30°. Кроме того, по этим данным невозможно найти высоту прямоугольного параллелепипеда.
Задача встречается в таком виде: Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда. Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
ответ : 3 разносторонний
* * * * * * * * * * * * * * * * * * *
"Центр вписанной окружности лежит внутри треугольника" ничего не дает _верно для всех типов треугольников.