Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.
Дано: АВ=СД=8см, ВС=6см, АД=16см, угол В = 45градусов. Решение: S=(a+b)делим на 2 и всё это умножаем на h-высоту. из точки В к основанию АД проводим высоту, обозначим её точкой К, высота будет перпендикулярна СД. Образуется треугольник АВК, в котором угол при к равен 90 градусов. значит, в треугольнике АВК: АВ=8см, АК=5см ( т.к. большее основание равно 16см, меньше равно 6, следовательно 16-6=10-сумма длин двух катетов при большем основании, 10:2=5-длина одного катета в треугольнике при большем основании). Чтобы найти площадь трапеции, нам надо знать длину высоты ВК(или h) (по-другому это будет неизвестный катет в прямоугольном треугольнике)., а чтобы узнать длину высоты,используем теорему Пифагора c^2=a^2+b^2. из этой теоремы находим неизвестный катет---> a^2=c^2-b^2. подставляем теперь числа к этой формуле: а^2=8^2 - 5^2 a^2=64-25 a^2=39 a=квадратный корень из 39-это высота h теперь найдём площадь трапеции: S=(6+16)/2 и умножаем на квадратный корень из 39 = 11 умноженное на корень из 39 ответ:S=11 умноженное на корень из 39