1-ый признак равенства треугольников: по двум сторонам и углу между ними (Теорема 3.1. – Признак равенства треугольников по двум сторонам и углу между ними - Если две стороны и угло между ними одного треугольнгрка равны соотвественно двум сторонам и углу между ними другого треугольника, то такие треугольники равны)
Доказательство:
Пусть у треугольников АВС и А1В1С1 угол А равен углу А1, АВ равно А1В1, АС равно А1С1, докажем, что треугольники равны.
Пусть А1В2С2 – треугольник, равный АВС, с вершины В2 на луче А1В1 и вершины С2 в той же полуплоскости относительно прямой А1В1, где лежит вершина С1.
Так как А1В1 равно А1В2, то вершина В2 совпадет с В1. Так как угол В1А1С1 равен углу В2А1С2, то луч А1С2 совпадет с А1С1. Так как А1С1 равен А1С2, то С2 совпадет с С1. Значит треугольник А1В1С1 совпадает стреугольниом А1В2С2, значит равен треугльнику АВС.
Теорема доказана.
2-ой признак равенства треугольников: по стороне и прилежим к ней углам (Теорема 3.2. - Признак равенства треугольников по стороне и прилежащим к ней углам - Если сторона и прилежащие у ней углы одного треугольника равны соотвественно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны)
Доказательство:
Пусть АВС и А1В1С1 – два треугольника, у которых АВ равно А1В1, угол А равен углу А1, и угол В равен углу В1. Докажем, что они равны.
Пусть А1В2С2 – треугольник, равный АВС, с вершины В2 на луче А1В1 и вершины С2 в той же полуплоскости относительно прямой А1В1, где лежит вершина С1.
Так как А1В2 равно А1В1, то вершина В2 совпадет с В1. Так как угол В1А1С2 равен углу В1А1С1, и угол А1В1С2 равен углу А1В1С1, то луч А1С2 совпадет с А1С1, а В1С2 совпадет с В1С1. Отсюда следует, что вершина С2 совпадет с С1. Значит треугольник А1В1С1 совпадает стреугольниом А1В2С2, значит равен треугльнику АВС.
Теорема доказана.
3-ий признак равенства треугольников: по трем сторонам ( Теорема 3.6. - Признак равенства треугольников по трем сторонам - Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны)
Доказательство:
Пусть АВС и А1В1С1 – два треугольника, у которых АВ равно А1В1, АС равно А1С1, и ВС равно В1С1. Докажем, что они равны.
Допустим, треугольники не равны. Тогда у них угол А не равен углу А1, угол В не равен углу В1, и угол С не равен углу С1. Иначе они были бы равны, по перовому признаку.
Пусть А1В1С2 – треугольник, равный треугольнику АВС, у которого Свершина С2 лежит в одной полуплоскости с вершиной С1 относительно прямой А1В1.
Пусть D – середина отрезка С1С2. Треугольники А1С1С2 и В1С1С2 – равнобедренные с общим основанием С1С2. Поэтому их медианы А1D и В1D – являются высотами, значит прямые А1D и В1D – перпендикулярны прямой С1С2. Прямые А1D и В1D не совпадают, так как точки А1, В1, D не лежат на одной прямой, но через точку D прямой С1С2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию.
Пусть основание прямоугольного параллелепипеда прямоугольник ABCD . AB=CB =x ; BC=AD =7x ;AB₁ =BA₁ =CD₁=DC₁=13 см ;AD₁ =DA₁ =BC₁=CB₁ =37 см. обозн._ высота параллелепипеда AA₁ =BB₁ =CC₁ =DD₁ =h.
Sбок - ?
S бок =2(AB+BC)*AA₁ = 2(x+7x)*h =16xh. По теореме Пифагора для треугольников ABB₁ и ADD₁: { AB²+BB₁² =AB₁² ; AD² +DD₁²=AD₁². { x²+h² =13² ; (7x)² +h²=37². Вычитаем из второго уравнения системы первое (7x)² -x² =37² -13²; 48x² =(37-13)(37+13) ; 2*24x² =24*2*25⇒x =5 ; h =√(13² -5²) =12. S бок =16xh =16*5*12 =16*60 =960 (см²).
1-ый признак равенства треугольников: по двум сторонам и углу между ними (Теорема 3.1. – Признак равенства треугольников по двум сторонам и углу между ними - Если две стороны и угло между ними одного треугольнгрка равны соотвественно двум сторонам и углу между ними другого треугольника, то такие треугольники равны)
Доказательство:
Пусть у треугольников АВС и А1В1С1 угол А равен углу А1, АВ равно А1В1, АС равно А1С1, докажем, что треугольники равны.
Пусть А1В2С2 – треугольник, равный АВС, с вершины В2 на луче А1В1 и вершины С2 в той же полуплоскости относительно прямой А1В1, где лежит вершина С1.
Так как А1В1 равно А1В2, то вершина В2 совпадет с В1. Так как угол В1А1С1 равен углу В2А1С2, то луч А1С2 совпадет с А1С1. Так как А1С1 равен А1С2, то С2 совпадет с С1. Значит треугольник А1В1С1 совпадает стреугольниом А1В2С2, значит равен треугльнику АВС.
Теорема доказана.
2-ой признак равенства треугольников: по стороне и прилежим к ней углам (Теорема 3.2. - Признак равенства треугольников по стороне и прилежащим к ней углам - Если сторона и прилежащие у ней углы одного треугольника равны соотвественно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны)
Доказательство:
Пусть АВС и А1В1С1 – два треугольника, у которых АВ равно А1В1, угол А равен углу А1, и угол В равен углу В1. Докажем, что они равны.
Пусть А1В2С2 – треугольник, равный АВС, с вершины В2 на луче А1В1 и вершины С2 в той же полуплоскости относительно прямой А1В1, где лежит вершина С1.
Так как А1В2 равно А1В1, то вершина В2 совпадет с В1. Так как угол В1А1С2 равен углу В1А1С1, и угол А1В1С2 равен углу А1В1С1, то луч А1С2 совпадет с А1С1, а В1С2 совпадет с В1С1. Отсюда следует, что вершина С2 совпадет с С1. Значит треугольник А1В1С1 совпадает стреугольниом А1В2С2, значит равен треугльнику АВС.
Теорема доказана.
3-ий признак равенства треугольников: по трем сторонам ( Теорема 3.6. - Признак равенства треугольников по трем сторонам - Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны)
Доказательство:
Пусть АВС и А1В1С1 – два треугольника, у которых АВ равно А1В1, АС равно А1С1, и ВС равно В1С1. Докажем, что они равны.
Допустим, треугольники не равны. Тогда у них угол А не равен углу А1, угол В не равен углу В1, и угол С не равен углу С1. Иначе они были бы равны, по перовому признаку.
Пусть А1В1С2 – треугольник, равный треугольнику АВС, у которого Свершина С2 лежит в одной полуплоскости с вершиной С1 относительно прямой А1В1.
Пусть D – середина отрезка С1С2. Треугольники А1С1С2 и В1С1С2 – равнобедренные с общим основанием С1С2. Поэтому их медианы А1D и В1D – являются высотами, значит прямые А1D и В1D – перпендикулярны прямой С1С2. Прямые А1D и В1D не совпадают, так как точки А1, В1, D не лежат на одной прямой, но через точку D прямой С1С2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию.