Построение: возьмем точку O на прямой, которая точно не лежит на перпендикуляре (это можно сделать на глаз без измерений), проведем окружность с центром в точке O и радиусом OP, где P – данная точка. Эта окружность пересекает прямую в двух точках A и B. Проведем окружности с центром с точке A и радиусом AP и с центром в точке B и радиусом AP. Последняя окружность пересекает первую в некоторой точке Q, прямая PQ – искомая.
Доказательство: Равнобедренные треугольники APO и BQO равны по трём сторонам, тогда отмеченные на чертеже углы равны. Пусть ∠A = α, тогда ∠AOP = ∠BOQ = 180° - 2α; ∠POQ = β = 180° - 2∠AOP = 4α - 180°. Отсюда ∠OPQ = (180° - β)/2 = 180° - 2α. Углы ∠AOP и ∠OPQ оказались равны, а так как это накрест лежащие углы при прямых AB и PQ и секущей PO, то AB || PQ, что и требовалось доказать.
При пересечении двух прямых можно
получить 4 равных угла по 90°, если
прямые перпендикулярны,либо две
пары вертикальных углов.
Если прямые перпендикулярны,
то сумма любых двух углов будет
равна 90°+90°=180°. То есть меньше,
чем 296°. Значит прямые не
перпендикулярны.
При пересечении двух прямых
образовано две пары вертикальных
углов : 2 острых угла и 2 тупых угла.
/_1 =/_3 < 90°; /_2 = /_4> 90°
Сумма двух острых углов меньше 180°
<296°.
Сумма острого и тупого углов равна
180°,
Значит, 296° в сумме можно получить,
только сложив тупые углы.
/_2 + /_4 =296°
/_2 = /_4 =296° : 2=148°
Острые углы смежные с тупыми :
/_1 = /_3 =180° - 148° = 32°
ответ: 32°, 148°, 32°, 148°