Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
ОТВЕТ: 60°
Быстрое решение (пояснения писать обязательно нужно):
1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.
По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:
2) ∠BAC = 90° - 30° = 60°
ОТВЕТ: 60°
---------
Диагональ ВD делит трапецию на два прямоугольных треугольника.
Сумма острых углов АВСD равна 90º ⇒
∠ВАD+∠ВСD=90º
В прямоугольном ∆ АВD
∠ВАD+∠АВD=90º ⇒
∠АВD= ∠ВСD ⇒
прямоугольные ∆ АВD и ∆ ВСD подобны по равному острому углу.
Из подобия треугольников следует отношение:
АD:ВD=ВD:ВС
ВD²=АD*ВС=18*2=36
ВD=6
ВD- высота трапеции
S=BD*(AD+BC):2
S=6*(18+2):2=60 (ед. площади)