1) 1) Сумма углов треугольника = 180 градусов
2) 180-90=90 сумма величин двух острых углов, т.к. один из углов прямой, т.е. =90 градусов
3) x+(x+24)=90
4) 2x=66
5) x=33
6) x+24=33+24=57
ответ: первый угол равен 33 градуса, второй — 57 градусов.
2) Пусть меньший угол х, тогда больший угол 4х
В сумме два острых угла образуют 90 градусов, значит:
х+4х=90
5х=90
х= 18 - это меньший угол
18*4=72 градуса - это больший угол
ответ: 18 градусов и 72 градуса
3) если угол С прямой, то А+В=90, но угол В=2 угла А. А+2А=90.
А=30. ВС - катет прямоугольного треугольника, лежащий проти в уга в 30 градусов.
вс=1/2 АВ
ВС=9
4) Т.к. угол DBC = 60 градусам, а угол CDB прямой, то угол DBC = 30 градусам, следовательно СВ = 8*2= 16( Т.к сторона лежащая против угла в 30 градусов равна половине гипотенузы), тогда высота СD = 8 корней из 3( Находим через теорему Пифагора), следовательно СD в квадрате = DB*АD, 64*3=8*AD, AD = 24
Вот так наверно :)
∠АОВ и ∠COD вертикальные,
∠ВОС и ∠AOD вертикальные.
Проведем:
ОЕ - биссектрису ∠АОВ,
OF - биссектрису ∠СOD,
OK - биссектрису ∠BOC,
OM - биссектрису ∠AOD.
Сначала докажем, что биссектрисы смежных углов перпендикулярны.
∠ВОА и ∠ВОС смежные, значит их сумма равна 180°:
∠1 + ∠2 + ∠3 + ∠4 = 180°
Биссектрисы разбили эти углы на пары равных углов:
∠1 = ∠2 и ∠3 = ∠4, значит
2 ·∠2 + 2 ·∠3 = 180°
2(∠2 + ∠3) = 180°
∠2 + ∠3 = 90°, значит
ОЕ⊥ОК.
∠СОВ и ∠COD смежные, значит и их биссектрисы пересекаются под прямым углом:
OF⊥OK.
Углы ЕОК и FOK имеют общую сторону ОК и составляют в сумме 180°, значит они смежные, следовательно стороны ОЕ и OF являются дополнительными лучами, т.е. лежат на одной прямой.
Что и требовалось доказать.