Например, для ∠A∠A, внешними будут углы ∠1∠1 и ∠2∠2 (см. рис.)

Свойства внешних углов треугольника
Сумма внешних углов треугольника, взятых по одному при каждой вершине, равна 360∘360∘.
Сумма внешнего и внутреннего угла при одной вершине равна 180∘180∘.
Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
∠1=∠B+∠C∠1=∠B+∠C
Примеры решения задач
Задание. В треугольнике ΔMNKΔMNK, внешний угол ∠M∠M равен 120∘120∘, а угол ∠N=65∘∠N=65∘. Найти угол ∠K∠K.
Решение. По теореме о внешнем угле∠M=∠N+∠K∠M=∠N+∠K. Подставляя в это равенство исходные данные, получим
120∘=65∘+∠K120∘=65∘+∠K
Выразим ∠K:∠K=120∘−65∘⇒∠K=55∘∠K:∠K=120∘−65∘⇒∠K=55∘
ответ. ∠K=55∘∠K=55∘
Задание. Внешние углы при двух вершинах треугольник равны 70∘70∘ и 150∘150∘. Найти внутренний угол при третьей вершине.
Решение. Обозначим внешние углы ∠1,∠2,∠3∠1,∠2,∠3, а соответствующие им внутренние -
доброй ночи! я понимаю, в чём возникла трудность. но хочу вас заверить — это легко. надеюсь, вы сами это вскоре поймёте.смотрите, чтоб понять, как это делать, нам нужно вспомнить такое понятие как вектор. вектор — направленный отрезок. по условию нам даны координаты вершин треугольника авс. чтоб найти то, что от нас требуется, то первым делом, нам следует найти координаты вектора. в нашем случае — это координаты вектора ab. давайте попробуем найти координаты нужного вектора. но для этого вспомним формулу что и как делать.чтоб найти координаты вектора, надо от точки конца отнять точки начала. вот, когда мы всё это прояснили, то можем приступить к вычислению: