Нам нужно доказать, что плоскость АВС параллельна плоскости А1В1С1
А1В1 — средняя линия треугольника АОВ, по определению. она соединяет середины сторон. по свойству сред линии треугольника она параллельна стороне АВ. Аналогично в треугольнике ВОС В1С1 — средняя линия параллельна стороне ВС.
Две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, значит плоскости параллельны. (в данном примере рассматриваем отрезки как части прямых)
Длины диагоналей прямоугольника равны Диагонали прямоугольника делятся точкой пересечения пополам. Треугольник, образованный меньшей стороной прямоугольника и половинами диагоналей, равнобедренный, значит в этом треугольнике углы при его основании равны (180° - 80°):2 = 50° Треугольник, образованный большей стороной прямоугольника и половинами диагоналей, равнобедренный, значит в этом треугольнике углы при его основании равны (180° - (180-80)):2 = 40° ответ: Углы между диагональю прямоугольника и его сторонами равны 40° и 50°
пусть A1 — середина ОА, В1 — середина ОВ и С1 — середина ОС.
Нам нужно доказать, что плоскость АВС параллельна плоскости А1В1С1
А1В1 — средняя линия треугольника АОВ, по определению. она соединяет середины сторон. по свойству сред линии треугольника она параллельна стороне АВ. Аналогично в треугольнике ВОС В1С1 — средняя линия параллельна стороне ВС.
Две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, значит плоскости параллельны. (в данном примере рассматриваем отрезки как части прямых)