Пусть точкой пересечения СК и BK будет точка О. В треугольнике CBL точка О лежит на середине гипотенузы BL и является центром описанной окружности треугольника. Следовательно BO=CO и треугольник BCO - равнобедренный. Значит угол CBO равен углу BCO и равны B/2.
Т.к. CK=AC, то треугольник AKC - равнобедренный и угол CAK равен углу CKA и равны А. Значит угол АСК=180-(А+А)=180-2А.
Угол ACB=90 и равен сумме углов BCK+ACK, где ВСК=ВСО=В/2
В/2+180-2А=90 (А+В=90 => А=90-В)
В/2+180-2(90-В)=90
В/2+180-180+2В=90
5В/2=90
В=36°
ответ: угол АВС=36°.
Мы знаем, что расстояние от точки до прямой - это перпендикуляр, опущенный из этой точки на прямую. В нашем случае это будет отрезок, параллельный оси Х.
Следовательно, расстояние от любой точки на координатной плоскости до прямой АС будет равно модулю разности координат Х этой точки и координаты Х точки, расположенной на этой прямой.
ответ: искомое расстояние равно (18-(-32)=50.
Решение для общего случая:
В общем случае надо было написать уравнение прямой, проходящей через две точки: А и С и из него получить уравнение перпендикуляра к этой прямой, проходящего через точку В:
(X+32)/0=(Y-16)/11 или Х+32=0 (1). То есть в уравнении прямой АС в классическом виде: Ax+By+C=0 мы получили коэффициенты А=1 и В=0.
Найдем уравнение прямой, перпендикулярной прямой АС и проходящей через точку В(18;44):
а) Выделим вектор нормали для прямой АС: n(1;0) - это НАПРАВЛЯЮЩИЙ ВЕКТОР для искомого перпендикуляра. Тогда уравнение перпендикуляра составим по точке В и направляющему вектору n(1;0):
(X-18)/1=(Y+44)/0 или Y=-44.(2) Точка пересечения прямой АС и перпендикуляра ВD к этой прямой найдется из системы уравнений (1) и (2): D(-32;-44).
Расстояние (модуль) ВD:
|ВD|=√[(Хd-Xb)²+(Yd-Yb)²]=√[(-32-18)²+(=-44-(-44))²]=50.
ответ:50.