Задание по геометрии: 1) В прямоугольном равнобедренном треугольнике гипотенуза равна 12 см. Найти катеты этого треугольника. 2) Найти меньшую диагональ ромба, если его сторона равна 13 см, а большая диагональ ромба равна 24 см.
Окружность360°, 3х+5х+10х=360° 18х=360 х=20 3*20=60 если начертит чертеж получим треугольник, две стороны которого равны радиусу, угол у вершины равен60° основание ьреугольника равно 12 см, отпустим с вершины треугольника на основание высоту, так как у нас треугольник равнобедренный, то эта высота будет и медианой и биссектрисой. когда отпусти высоту получим прямоугольный треуголник 12:2= 6 см, напротив лежит угол 30°, сторона в 6 см является катетом, а гипотенуза радиус, значит радиус равен 12см. по правилу катет лежащий напротив 30° равен половине гипотенузы.
Длины дуг, на которые разбивается описанная окружность составляют 3x, 5x, 10x 3x + 5x + 10x = 360° 18x = 360 x = 20 центральные углы, опирающиеся на дуги равны 60°, 100°, 200° Меньшей из сторон соответствует наименьший угол, 60° Два радиуса и наименьшая сторона образуют равносторонний треугольник с углом при вершине 60° и основанием 11 Найдём его боковую сторону, по теореме косинусов 11² = r² + r² - 2·r·r·cos (60°) 11² = 2·r² - 2·r²·1/2 11² = 2·r² - r² 11² = r² r = 11 Можно и проще, если угол при вершине треугольника 60°, то при основании тоже 60° и треугольник равносторонний, радиус равен стороне.
Чертежи смотрите во вложении.
✧Задание №1.✧
В прямоугольном равнобедренном треугольнике гипотенуза равна 12 см. Найти катеты этого треугольника.
Дано :
ΔАВС - равнобедренный и прямоугольный (∠В = 90°, АВ = СВ).
АС = 12 см.
Найти :
АВ = ?
СВ = ?
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы (теорема Пифагора).Пусть АВ = СВ = х. Тогда АВ² + СВ² = АС²
х² + х² = 12²
2х² = 144
х² = 72
х₁ = - не удовлетворяет условию задачи, так как длины отрезков не могут выражаться отрицательными числами.
х₂ = - подходит.
Тогда АВ = СВ = х = см.
см, см.
✧Задание №2.✧
Найти меньшую диагональ ромба, если его сторона равна 13 см, а большая диагональ ромба равна 24 см.
Дано :
Четырёхугольник ABCD - ромб.
ВС = 13 см, АС = 24 см.
Найти :
BD = ?
В ромбе диагонали точкой пересечения делятся пополам и взаимно перпендикулярны.Следовательно, АС⊥BD, ВО = , CO = = *24 см = 12 см.
Рассмотрим ΔВОС - прямоугольный (∠ВОС = 90°).
По теореме Пифагора -
ВО² + СО² = ВС²
ВО² = ВС² - СО² = 13² - 12² = 169 - 144 = 25 ⇒ ВО = см.
Тогда BD = 2*BO = 2*5 см = 10 см.
10 см.