Высота правильной пирамиды проецируется точно в центр основания, которым в данном случае является правильный треугольник. Высота, боковое ребро и отрезок, соедияющий центр основания с его вершиной, образуют прямоугольный треугольник, в котором боковое ребро является гипотенузой, и ее можно найти, используя теорему Пифагора. Но нам неизвестен катет - тот самый отрезок между центром и вершиной основания. Обратим вниание, что этот отрезок является радиусом окружности, описанной вокруг основания-треугольника. Радиус описанной окружности можно вычислить по формуле: R = a(3^0,5)/3, где а - сторона треугольника, (3^0,5) - корень из трех. В нашем случае радиус равен: R = 6(3^0,5)(3^0,5)/3 = 63/3 = 6. Боковая грань равна: (3^2 + 6^2)^0,5 = (9 + 36)^0,5 = 45^0,5 = 35^0,5 (три корня из пяти). Так что задачу ты решила верно и без моей не стоило беспокоиться. :)
10. Все стороны ромба равны. Значит его периметр = 8*4 см= 32 см Меньшая диагональ ромба делит его на 2 равнобедренных треугольник. Известно, что угол напротив основания = 60 градусов, значит другме углы(при основании) = (180-60)/2 = 60 градусов. Треугольник, у которого все углы равны, называется равносторонним, а значит меньшая диагональ равна стороне = 8см. ответ: Периметр ромба = 32 см, меньшая диагональ = 8 см.
11. Диагональ (любая) делит ромб на 2 равнобедренных треугольника. Известно, что угол при основании этого треугольника (между диагональю и стороной ромба) = 60 градусов. Т.к. треугольник равнобедренный, то и второй угол между диагональю и ромбом будет 60 градусов. Третий угол = 180-60-60 = 60 градусов. Получаем равносторонний треугольник. Отсюда следует, что сторона ромба = диагонали = 10 см. А периметр = 4*10см= 40 см ответ: 40 см