М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
shcukinalena
shcukinalena
21.11.2020 07:24 •  Геометрия

В равнобедренном треугольнике 1) углы при основании равны; 2) биссектриса треугольника, проведённая к его основанию, является медианой и высотой треугольника. надо доказать

👇
Открыть все ответы
Ответ:
TOMIRIBOT
TOMIRIBOT
21.11.2020

найдём сторону ромба , для этого рассмотрим прямоуг.треугольник , катеты которого-половинки

диагоналей ромба, а гипотенуза-сторона ромба

катеты 15и20(применяя пифагорову тройку ) гипотенуза-25, т.е. сторона основания 25

или примени теорему Пифагора

если все бок.грани равнонаклонены к плоск. основания, то основание высоты пирам.попадает

в центр вписанной в ромб окружности, а значит в точку пересеч.диагоналей

проводим из этой точки перпендикуляр к стороне ромба-это радиус впис. окр.

рассмотримопять тот же треуг. Найдём в нём высоту , проведенную из вершины прямого угла

треуг. имеет катеты15и20 и гипотенузу 25.

применим свойство: катет есть среднее пропорциональное между гипот.и отрезком гипотен.,

прилежащим к этому катету :202=25*Х Х=16

тогда другая часть гипот.=25-16=9

пименяем : высота, проведенная из вершины прямого угла есть среднее пропорциональное

между отрезками гипотенузы : r2=9*16. r=12

теперь рассматрим треуг. прямоуг. состоящий из высоты пирамиды , радиуса впис.окр.(r) и и высоты боковой грани

катеты 16 и12, гипот.20

находим площадь бок.грани

1/2*25*20=250

Sбок.грани=4*250=1000

4,8(51 оценок)
Ответ:
DariaBlack777
DariaBlack777
21.11.2020

1.  45 см².

2.  416 см².

Объяснение:

Дано.   В треугольнике МРК, ∠M= 45°,

а высота РН  делит сторону МК на отрезки  МН и НК, соответственно равные 6 см и 9 см.

Найдите площадь  треугольника МРК.  

Решение.

Δ МРН - равнобедренный с равными углами А= МРН = 45°. Следовательно МН = РН = 6 см.

Площадь  треугольника МРК  S=1/2 MK*PH = 1/2*15*6=45 см².

***

2.  Дано.   В прямоугольной трапеции  ABCD диагональ BD является биссектрисой острого угла.  Найдите площадь трапеции, если AB= 16 см CD=20 см.

Решение.

Диагональ трапеции, являющаяся биссектрисой острого угла отсекает равнобедренный треугольник  BCD. Следовательно, ВС=CD =20 см/

Проведем высоту СЕ. Из треугольника CED

ED=√20²-16²=√ 400-256 = √144 = 12 см.   AD = 20+12=32 см.

Площадь S=h(a+b)/2 = 16*(20+32)/2= 16*52/2 = 416 см².

4,6(45 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ