Т.к. ac=a1c1, и bm, b1m1 - медианы, то am=cm=a1m1=c1m1. Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам: - ab=a1b1 по условию; - bm=b1m1 по условию; - am=a1m1 как только что доказано. У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы bmc и b1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой. Треугольники bmc и b1m1c1 будут равны по двум сторонам и углу между ними: - bm=b1m1 по условию; - сm=c1m1 как было показано выше; - углы bmc и b1m1c1 равны как доказано выше. У равных треугольников bmc и b1m1c1 равны соответственные стороны bc и b1c1. Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам.
Условие дано не полностью. Это одна из задач по готовым рисункам. Правильно: АВСD- равнобедренная трапеция. AD=15 см, BC=5. диагонали AC и BD пересекаются в точке О под прямым углом. Найти высоту ЕС. ------------------------------------- Вариант решения 1) Проведем через вершину С параллельно АВ прямую до пересечения с продолжением АD в точке К. Четырехугольник ВСКD - параллелограмм ( ВС║АК по условию, СК║ВD по построению). Следовательно, DК=ВС=5. В равнобедренной трапеции диагонали равны. Так как СК║ВD, то ∠АСК =∠АОD как соответственные при пересечении параллельных прямых секущей. Следовательно, треугольник АСК прямоугольный равнобедренный, его высота, как высота равнобедренного треугольника, является его медианой, Медиана прямоугольного треугольника равна половине гипотенузы. Значит, СЕ=АЕ=ЕК. АD+DK=15+5=20 CE=20:2=10 см * * * Вариант решения 2) В равнобедренной трапеции диагонали равны и при пересечении образуют подобные треугольники, основания которых - основания трапеции. Треугольник ВОС - равнобедренный прямоугольный, его высота является медианой и по свойству медианы прямоугольного треугольника равна половине основания. h₁ ∆ ВОС=2,5 см Аналогично высота ∆ АОD h₂=15:2=7,5 см Высота трапеции равна сумме высот треугольников ВОС и АОD и равна СЕ. СЕ=h₁+h₂=2,5+7,5=10 см.
am=cm=a1m1=c1m1.
Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам:
- ab=a1b1 по условию;
- bm=b1m1 по условию;
- am=a1m1 как только что доказано.
У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы bmc и b1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой.
Треугольники bmc и b1m1c1 будут равны по двум сторонам и углу между ними:
- bm=b1m1 по условию;
- сm=c1m1 как было показано выше;
- углы bmc и b1m1c1 равны как доказано выше.
У равных треугольников bmc и b1m1c1 равны соответственные стороны bc и b1c1.
Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам.