Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Чтобы установить вид треугольника по его вершинам, важно знать, какие свойства имеют разные виды треугольников. В данном случае, нам нужно определить, является ли треугольник равносторонним, равнобедренным или разносторонним.
Для начала, давайте построим данную фигуру на координатной плоскости.
1. Нанесите вершины треугольника a(15; 10), b(11; 7) и c(3; 15) на координатную плоскость.
2. Соедините эти вершины линиями, чтобы получить треугольник.
Теперь, когда у нас есть изображение треугольника, давайте определим его вид.
1. Проверим, является ли треугольник равносторонним.
Равносторонний треугольник имеет все стороны равной длины. Для этого нам нужно вычислить длины всех сторон треугольника и сравнить их.
Длина стороны ab:
AB = √((x2 - x1)^2 + (y2 - y1)^2)
AB = √((11 - 15)^2 + (7 - 10)^2)
AB = √((-4)^2 + (-3)^2)
AB = √(16 + 9)
AB = √25
AB = 5
Длина стороны bc:
BC = √((x2 - x1)^2 + (y2 - y1)^2)
BC = √((3 - 11)^2 + (15 - 7)^2)
BC = √((-8)^2 + (8)^2)
BC = √(64 + 64)
BC = √128
BC = √(64 * 2)
BC = 8√2
Длина стороны ac:
AC = √((x2 - x1)^2 + (y2 - y1)^2)
AC = √((3 - 15)^2 + (15 - 10)^2)
AC = √((-12)^2 + (5)^2)
AC = √(144 + 25)
AC = √169
AC = 13
Мы видим, что стороны ab, bc и ac имеют разные длины, поэтому этот треугольник не является равносторонним.
2. Проверим, является ли треугольник равнобедренным.
Равнобедренный треугольник имеет две стороны равной длины. Для этого нам нужно сравнить длины сторон треугольника попарно.
Сравним длины сторон ab и ac:
AB = 5, AC = 13
Стороны ab и ac имеют разную длину, значит этот треугольник не является равнобедренным.
Сравним длины сторон ab и bc:
AB = 5, BC = 8√2 (прокорениваем число, чтобы упростить сравнение)
AB ≈ 5, BC ≈ 11.3 (приближенное значение после прокоренивания)
Стороны ab и bc имеют разную длину, поэтому этот треугольник не является равнобедренным.
3. Так как треугольник не является равносторонним и равнобедренным, он будет разносторонним (все его стороны имеют разную длину).
В итоге, треугольник с вершинами a(15; 10), b(11; 7) и c(3; 15) является разносторонним.
по теореме синусов отношение стороны треугольника к синусу противолежащего угла равно двум радиусам, поэтому а/sinA=2R, b/sinB=2R, c/sinC=2R
1/sina=2*2, sin a=1/4=0.25, a=14градусов 30минут
2/sinгамма=2*2, sin гамма=2/4=0.5, гамма=30градусов
бета= 180градусов-(30градусов+14градусов 30минут)=135градусов 30минут
b/sin135градусов 30минут=2*2, b=4*0.7009=2.8
S=1/2*a*b*sin135градусов 30минут=1/2*1*2*0.7009=0.7