Развёрткой боковой поверхности цилиндра служит прямоугольник, диагональ которого, равная 12пи, составляет с одной из сторон угол 30 градусов
диагональ боковой поверхности цилиндра d=12пи
высота цилиндра h=d*sin30=12pi*1/2=6pi <высота равна меньшей стороне развёртки
большая сторона развертки b=d*cos30=12pi*√3/2=6pi√3
большая сторона развертки b - это длина окружности ОСНОВАНИЯ b=2pi*R
радиус основания R=b/(2pi) = 6pi√3 / (2pi)=3√3
площадь основания So=pi*R^2 = pi*(3√3)^2=27pi <два основания
площадь боковой Sb=b*h=6pi√3*6pi=36pi^2√3
площадь полной поверхности цилиндра S=Sb+2So=36pi^2√3+2*27pi=36pi^2√3+54pi
ОТВЕТ
36pi^2√3+54pi
36√3pi^2+54pi
18pi (2√3pi+3)
** возможны другие варианты ответа
11 градусов
Объяснение:
начертим прямоугольный треугольник АВС так, что бы справа у него был прямой угол.
проведём из прямого угла сначала медиану, а потом биссектрису другим цветом(что б не запутаться.)
Обазначим медиану СD, а биссектрису СX
Слева будет острый угол, равный 34.
тогда по свойству прям. угол. треуг. медиана, проведённая из вершины прямого угла равна половине гипотенузы.
Отмечаем это на черчеже.
Видим, что у нас образовался р/б треугольгик АСD.
У него есть острый угол равный 34- по мусловию.
Тогда по св0ву р/б треуг. углы при основании равны.
тогда угол DCA равен 34.
Но мы знаем, что биссектриса делит прямой угол пополам.
Тогда угол ВСА : 2 равно 45 равно углы DCX и XCA.
Теперь мы вычитаем из угла XCA угол DCA равно 45-34=11 градусов
Равно угол XCD
в прямоугольной треугольнике две стороны BC и HC равны 10 и 6, значит трел-египетский (со сторонами пропорц 3, 4, 5) и третья сторона BH равна 8.
по теореме косинусов cos угла напротив угла С равен (ВС2+CH2-BH2)/(2BC CH)=
(100+36-64)/(2*10*6)=0, 6 значит угол С=А=53 градуса, угол В равен 180-2*53=74 градуса