ответ: S=6√432=72√3
Объяснение: проведём к основанию треугольника высоту Н. Она разделила треугольник на 2 прямоугольных треугольника, в котором боковая сторона становится гипотенузой 24см. Мы знаем, что угол при основе 30°. По свойствам угла 30°, катет, который лежит против него равен половине гипотенузы, значит проведённая высота = 24÷2=12. По теореме Пифагора найдём половину основания треугольника: 576 -144=432. Половина основания=√432. Основание = 2×√432. Зная высоту найдём площадь треугольника:
S=√432÷2×12=6√432 = 6×√16×√9×√3=
=6×4×3√3=72√3
Я не понял, откуда идёт деление боковой стороны на орезки 4 и 6, сделал решение, в котором получаются целые значения. Длина окружности тоже, в общем-то лишнее данное, можно решать и без неё. Итак:
Смотрим рисунок. Поскольку центр вписанной окружности лежит в точке пересечения биссектрис, то угол ЕАО= углу FАО.
В Δ ЕАО и Δ FАО углы Е и F прымые, значит Δ ЕАО=Δ FАО по четвёртому признаку равенства прямоугольных треугольников (равенство гипотенузы и острого угла).
Значит АF=АЕ=6 см.
Точно так же Δ DCО=Δ FCО, и DC=FC=6 см
Теперь известны длины сторон ΔАВС:
АВ=ВС=10 см
АС=12 см
Находим площадь ΔАВС, применяя формулу Герона:
Можно решить и по другому, с использованием длины окружности:
Из длины окружности находим её радиус:
Из ΔВЕО находим ОВ:
Если допустить, что боковая сторона делится по=другому (АЕ=4 см, ВЕ=6 см), тогда целых значений не получается, поэтому я оставил это решение.
Ну и, как "Лучшее решение" не забудь отметить, ОК?!... ;)))