44x² +100y² =4400 (обе части уравнения разделим на 4400) ⇒x²/100 +y²/44 = 1 или x²/(10)² + y²/(2√11)² =1 ⇒ Полуоси эллипса a =10 ; b =2√11. Уравнение прямой направленной по диагонали прямоугольника, построенного на осях эллипса будет y =kx =b/a* x ; y =(√11)/5 *x . Определим точки пересечения этой прямой с эллипсом для этого решаем систему { 44x² +100y² =4400 ; y =(√11)/5 *x. { 44x² +100*11/25*x² =4400 ; y =(√11)/5 *x. {2* 44x² =4400 ; y =(√11)/5 *x. [ { x = -5√2 ; y = -√22 ;{ x=5√11 ;y = - √22. M ( - 5√2 ; -√22) и N (5√2 ; √22) Определим длину хорды MN (расстояние между этими точками) : MN =√((5√2 - (- 5√2))² +√(√22 -(-√22))²) = √((2*5√2)² +(2*√22)²) =2√((5√2)² +(√22)²) =2√72 =2√(36*2) =2*6√2 ;
Дана прямая а и точка М, не лежащая на ней.
Проводим дугу с центром в точке М (черная), произвольного радиуса, большего расстояния от точки М до прямой.
Получили две точки пересечения дуги и прямой а. Обозначим их А и В.
Теперь построим две окружности (красных), с центрами в данных точках, произвольного одинакового радиуса (большего половины отрезка АВ).
Точки пересечения этих окружностей назовем К и Н.
Проводим прямую КН.
КН - искомый перпендикуляр к прямой а.
Доказательство:
Если точка равноудалена от концов отрезка, значит она лежит на серединном перпендикуляре к отрезку.
АК = КВ как равные радиусы, значит К лежит на серединном перпендикуляре к отрезку АВ.
АН = НВ как равные радиусы, значит Н лежит на серединном перпендикуляре к отрезку АВ.
КН - серединный перпендикуляр к отрезку АВ.
МА = МВ как равные радиусы черной окружности, значит и точка М лежит на прямой КН, т.е. перпендикуляр к прямой а проходит через точку М.