дано: v(ц)=106π, a = 45°, k = 5√2
найти: v(пр) - ?
решение:
диагональ боковой грани призмы принадлежит самой бокой грани. а боковая грань в свою очередь касается поверхности цилиндра, поэтому расстояние между осью цилиндра и диагональю боковой грани - это есть радиус цилиндра.
k = r.
объем призмы находится по формуле:
v(пр) = s*h
найдем высоту.
v(ц) = π*r^2*h
h = v(ц) / π*r^2 =106π / 50π = 2,12
найдем площадь ромба:
s = 4r^2 / sina = 4*25*2/ sin45 = 50√2
v(пр) = s * h = 2,12 * 50√2 = 106√2
ответ: 106√2
От всех сторон треугольника равноудалена точка пересечения его биссектрис, т.е. центр вписанной окружности.
Вершиной угла, под которым видна гипотенуза ( она - длинная сторона прямоугольного треугольника), является центр вписанной окружности, а его величина - разность между суммой углов треугольника и полусуммой его острых углов
∠АDВ=180°-0,5•(38°+52°)=135°
Заметим, что тупой угол, образованный биссектрисами острых углов прямоугольного треугольника всегда равен 135°, так как их сумма 90°, а полусумма -– 45°
ответ нет потомушто он дед пердет