Сторона AB ромба ABCD равна а, один из углов ромба равен 60 градусов. Через сторону АВ проведена плоскость альфа на расстоянии а/2 от точки D. Найдите расстояние от точки С до плоскости. Покажите на рисунке линейный угол двугранного угла DАВМ, М принадлежит плоскости. Найдите синус угла между плоскостью ромба и плоскостью альфа. Решение. CD параллельна АВ, следовательно, параллельна плоскости альфа, в которой лежит АВ. Все точки прямой, параллельной плоскости, удалены от нее на равное расстояние. ⇒ точка С находится на том же расстоянии от плоскости, что и точка D, т.е. на расстоянии а/2. Угол между плоскостью ромба и плоскостью альфа - двугранный. Двугранный угол - это часть пространства, заключённая между двумя полуплоскостями, имеющими общую границу. Линейным углом двугранного угла называется угол между двумя перпендикулярами к ребру двугранного угла, лежащими в гранях двугранного угла и имеющими на ребре общее начало.
Из любой точки ребра двугранного угла можно провести линейный угол, и все эти углы будут равны между собой. Так как острый угол ромба равен 60°, его диагональ ВD делит ромб на два равносторонних треугольника. DK - высота треугольника (и высота ромба), перпендикулярна АВ, ⇒ DK=(а√3)/2 Проекция отрезка DK перпендикулярна АВ, т.е. KN⊥AB по теореме о трех перпендикулярах. Синус угла угла DKN между плоскостью ромба и плоскостью альфа - это отношение между отрезком DN и высотой DK ромба. sin DKN=DN:DK Угол НВМ=углу DKN. sin DKN=a/2:(а√3)/2=1/√3 sin НВМ=1/√3
Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие прямоугольные треугольники равны. чтобы доказать эту теорему, построим два прямоугольных гольника abc и а'в'с', у которых углы а и а' равны, гипотенузы ав и а'в' также равны, а углы с и с' — прямые наложим треугольник а'в'с' на треугольник abc так, чтобы вершина а' совпала с вершиной а, гипотенуза а'в' — с равной гипотенузой ав. тогда вследствие равенства углов a и а' катет а'с' пойдёт по катету ас; катет в'с' совместится с катетом вс: оба они перпендикуляры, проведённые к одной прямой ас из одной точки в (§ 26,следствие 3). значит, вершины с и с' совместятся. треугольник abc совместился с треугольником а'в'с'. следовательно, /\ авс = /\ а'в'с'.эта теорема даёт 3-й признак равенства прямоугольных треугольников (по гипотенузе и острому углу).
Решение.
CD параллельна АВ, следовательно, параллельна плоскости альфа, в которой лежит АВ.
Все точки прямой, параллельной плоскости, удалены от нее на равное расстояние. ⇒ точка С находится на том же расстоянии от плоскости, что и точка D, т.е. на расстоянии а/2.
Угол между плоскостью ромба и плоскостью альфа - двугранный.
Двугранный угол - это часть пространства, заключённая между двумя полуплоскостями, имеющими общую границу.
Линейным углом двугранного угла называется угол между двумя перпендикулярами к ребру двугранного угла, лежащими в гранях двугранного угла и имеющими на ребре общее начало.
Из любой точки ребра двугранного угла можно провести линейный угол, и все эти углы будут равны между собой.
Так как острый угол ромба равен 60°, его диагональ ВD делит ромб на два равносторонних треугольника. DK - высота треугольника (и высота ромба), перпендикулярна АВ, ⇒
DK=(а√3)/2
Проекция отрезка DK перпендикулярна АВ, т.е. KN⊥AB по теореме о трех перпендикулярах.
Синус угла угла DKN между плоскостью ромба и плоскостью альфа - это отношение между отрезком DN и высотой DK ромба.
sin DKN=DN:DK
Угол НВМ=углу DKN.
sin DKN=a/2:(а√3)/2=1/√3
sin НВМ=1/√3