Для острого угла cosα = 4 5 . Найдите: а) значение sinα (наличие формул обязательно); b) значение tg α (наличие формул обязательно); c) используя значение tg α, постройте угол α. [4] 5. Найдите высоту прямоугольного треугольника, проведенную из вершины прямого угла, если она делит его гипотенузу на отрезки длиной 5 см и 20 см. Рисунок обязателен. [4] 6. Найдите углы прямоугольного треугольника ABC, если его катеты AC и BС равны 2√3 см и 2 см
Построим треугольник АВС и проведем медианы АЕ и ВД. В равнобедренном треугольнике: высота, биссектриса и медиана, исходящие из угла образованного равными сторонами, один и тот же отрезок. Значит угол АДВ=АДО=90 градусам. Медианы треугольника пересекаются в одной точке, и делятся этой точкой на две части в отношении 2:1, считая от вершины. Значит АО=ОЕ*2=2,5*2=5 см. Так как медиана ВД проведена к стороне АС то АД= АС/2=8/2=4 см По теореме Пифагора АО^2=AД^2+ОД^2. Выразим отсюда ОД: ОД^2=АО^2-АД^2=5^2-4^2=25-16=9 ОД=3 см. Значит ВД=ОД*3=3*3=9 см.
Площадь выпуклого четырехугольника, равна половине произведения его диагоналей, умноженному на синус угла между ними. Диагонали прямоугольника равны, поэтому: S прямоугольника =½d²·sin γ. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Образованные половинами диагоналей и каждой из сторон треугольники - равнобедренные. Угол ОАД=ВАД=37° по условию.⇒ угол АДО=углу ОАД - равен 37° Угол ВОА - внешний для треугольника АОД при вершине О и равен сумме двух других, не прилежащих к нему: Угол ВОА=37°+37°=74° S (АВСД=3*3*sin (74°) :2 sin (74°) найдем по таблице синусов. S (АВСД)=9*0,9613:2 ≈ 4,325 см²
В равнобедренном треугольнике: высота, биссектриса и медиана, исходящие из угла образованного равными сторонами, один и тот же отрезок. Значит угол АДВ=АДО=90 градусам.
Медианы треугольника пересекаются в одной точке, и делятся этой точкой на две части в отношении 2:1, считая от вершины. Значит АО=ОЕ*2=2,5*2=5 см.
Так как медиана ВД проведена к стороне АС то АД= АС/2=8/2=4 см
По теореме Пифагора АО^2=AД^2+ОД^2.
Выразим отсюда ОД: ОД^2=АО^2-АД^2=5^2-4^2=25-16=9
ОД=3 см. Значит ВД=ОД*3=3*3=9 см.