В правильной треугольной пирамиде основанием высоты является центр правильного треугольника.. Этот центр - пересечение высот, медиан и биссектрис треугольника. Нам дано, что боковая грань правильной треугольной пирамиды образует с плоскостью основания угол в 60 градусов. Это значит, что апофема SН (высота боковой грани) образует с плоскостью основания угол 60 градусов. В прямоугольном треугольнике ОSH: tg60=SO/OH. Отсюда ОН=SO/tg60 или ОН= 10√3/√3 =10. Этот отрезок можно найти и по Пифагору: SH²-ОН²=SO², отсюда ОН=√(300/3)=10. ОН - это 1/3 от высоты правильного треугольника (основания пирамиды), так как медианы треугольника делится точкой пересечения (центром правильного треугольника) в отношении 2:1, считая от вершины. Значит высота равна 30. Тогда сторона основания "a" найдется из формулы: h=(√3/2)*a: а=2*h/√3 или а=20√3. ответ: сторона основания равна 20√3.
Кароче, Если соеденить точки появится треугольник, но этого недостаточно ... Согласно теореме ... через три точки, которые не лежат на одной прямой можно провести плоскость после этого мы должны через точку В1 провести прямую, так чтобы она была паралелльна к АД... и так унас появится прямоугольник чтобы найти стороны прямоугольника, сперва расмотрим прямоугольный треугольник АВВ1... через теор. Пифагора: АВ1 = корень(АВ^2+BB1^2) = корень(16+32)=4корень3, и так Найдем площадь прямоугольника... S=ab=АД*АВ1=2корень3*4корень3=24 (обажаю завершающие моменты геометрий)
Нам дано, что боковая грань правильной треугольной пирамиды образует с плоскостью основания угол в 60 градусов. Это значит, что апофема SН (высота боковой грани) образует с плоскостью основания угол 60 градусов.
В прямоугольном треугольнике ОSH: tg60=SO/OH.
Отсюда ОН=SO/tg60 или ОН= 10√3/√3 =10.
Этот отрезок можно найти и по Пифагору:
SH²-ОН²=SO², отсюда ОН=√(300/3)=10.
ОН - это 1/3 от высоты правильного треугольника (основания пирамиды), так как медианы треугольника делится точкой пересечения (центром правильного треугольника) в отношении 2:1, считая от вершины. Значит высота равна 30. Тогда сторона основания "a" найдется из формулы: h=(√3/2)*a:
а=2*h/√3 или а=20√3.
ответ: сторона основания равна 20√3.