Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°
Окружность касается сторон AB и AD прямоугольника ABCD и пересекает DC в единственной точке F, а BC-в точке E.
Найти площадь AFCB, если AB=32, AD=40 и BE=1
————
АBCD- прямоугольник. ⇒
AFCB - прямоугольная трапеция. Площадь трапеции равна произведению полусуммы оснований на высоту.
S=0,5•(FC+AB)•BC
СF следует найти.
Проведем радиусы ОК и ОТ к АВ и АД соответственно.
АК=ОК=ОТ=ТА=R
Опустим из Е перпендикуляр ЕН на радиус ОК
КН=ВЕ=1⇒ НО=R-1
ЕН=ВК=АВ-R=32-R
По т.Пифагора из ∆ ОЕН
R²=(32-R)²+(R-1)²⇒
R²-66 R+1024=0 Решив квадратное уравнение, получим два корня:
R1=41; R2=25
Первый не подходит, т.к. больше, чем АВ, и будет касаться не АВ, а её продолжения.
R=ОЕ=25
Проведем ОМ перпендикулярно СD.
Основание СF=CM+MF
CM=BK=AB-R=7
MF=√(OF²-OM²)
OM=AD-R=40-25=15
MF=√(25²-15²)=20
CF=20+7=27
S=0,5•(27+32)•40=1180 ( ед. площади)