Пусть дан один равнобедренный треугольник и второй равнобедренный треугольник АВС с равными углам при основаниях, следовательно, и третий угол при вершине одного треугольника равен третьему углу второго.
Эти треугольники подобны. В подобных треугольниках все их элементы пропорциональны, следовательно, точка пересечения биссектрисы угла при основании с высотой второго треугольника делит ее в том же отношении, что в первом, т.е. 5:3
Высота ВН равнобедренного треугольника, проведенная к основанию, является и биссектрисой и медианой. АН=НС.
Имеем две биссектрисы треугольника АВС, которые пересекаются в некой точке О. Точка О пересечения биссектрис треугольника АВС является центром вписанной в него окружности.
Из точки О проведем перпендикуляры ОМ и ОК к боковым сторонам треугольника. М, К и Н - точки касания окружности и сторон треугольника.
ОМ=ОК=ОН= радиусу вписанной окружности.
Пусть коэффициент отношения отрезков высоты равен х.
Тогда ВО=5х, ОН=3х, ОМ=ОК=3х
Треугольники ВОМ и ВОК - египетские,т.к. катет и гипотенуза относятся как 3:5 ⇒
ВМ=ВК=4х ( можно проверить по т.Пифагора)
ВН=3х+5х=8х
Треугольники ВМО и ВНА - подобные, т.к. оба прямоугольные и имеют общий острый угол. Следовательно, треугольник ВНА тоже египетский, и из отношения сторон такого треугольника следует
АВ=10х, АН=6х. Или из подобия треугольников через отношение сходственных сторон
ВН:ВМ=АН:ОМ
ВН=3х+5х=8х
8х:4х=АН:МО
АН:МО=2
АН=6х
АВ=ВС=5*2=10х
ВН - медиана, поэтому
АС=6х+6х=12х
Периметр треугольника равен АВ+ВС+АС=48
Р=10х+10х+12х=32х
32х=48
х=1,5 см
АВ=ВС=1,5*10=15 см
АС=1,5*12=18 см
Центром вписанной в треугольник окружности является точка пересечения биссектрис углов треугольника.
Если точка пересечения биссектрис и точка пересечения медиан совпадают, то медианы треугольника являются и его биссектрисами.
Следовательно, данный треугольник - равносторонний.
Медианы треугольника пересекаются в одной точке. Точка пересечения медиан делит их в отношении 2:1, считая от вершины.
Прямая , параллельная стороне треугольника и равная 2 см, делит его на подобные треугольники с коэффициентом подобия 3:2 (вся медиана - 3 части, от вершины до точки пересечения медиан- 2 части, следовательно, и k=3:2)
Тогда таким же будет и отношение сторон всего треугольника к сторонам отсекаемого, т.е. к длине отрезка, на котором лежит центр окружности.
Обозначим сторону треугольника а.
а:2=3:2
2а=6
а=3 см
Периметр - сумма длин всех трех сторон треугольника.
Р=3•3=9 cм
----------
Если не прямая, на которой лежит центр окружности, равна 2 см, а сторона треугольника, тогда, естественно, периметр равен 6 см. Главное - определить, что треугольник равносторонний.