Считаем, что по условию биссектриса ВD проведена из вершины В треугольника, иначе бы было сказано, что дана биссектриса угла при основании. Тогда: 1. Проводим из произвольной точки В две концентрические окружности радиусами АВ (боковая сторона треугольника) и ВD (биссектриса угла В). 2. Проводим прямую ВD1, равную двум отрезкам ВD. 3. Строим перпендикуляр к середине отрезка ВD1 (то есть перпендикуляр к прямой ВD1, проходящий через точку D). Для этого из точки D1 радиусом АВ проводим окружность и соединяем точки А и С пересечения двух окружностей радиуса АВ. 4. Соединив полученные точки А и С с точкой В получаем искомый равнобедренный треугольник АВС.
Считаем, что по условию биссектриса ВD проведена из вершины В треугольника, иначе бы было сказано, что дана биссектриса угла при основании. Тогда: 1. Проводим из произвольной точки В две концентрические окружности радиусами АВ (боковая сторона треугольника) и ВD (биссектриса угла В). 2. Проводим прямую ВD1, равную двум отрезкам ВD. 3. Строим перпендикуляр к середине отрезка ВD1 (то есть перпендикуляр к прямой ВD1, проходящий через точку D). Для этого из точки D1 радиусом АВ проводим окружность и соединяем точки А и С пересечения двух окружностей радиуса АВ. 4. Соединив полученные точки А и С с точкой В получаем искомый равнобедренный треугольник АВС.
V₂ = 4/3 πr³
V₁ : V₂ = R³ : r³ = 27 : 64, ⇒
R : r = 3 : 4
S₁ = 4πR²
S₂ = 4πr²
S₁ : S₂ = R² : r² = 9 : 16