а) 60°. б) 90°.
Объяснение:
Многогранник АВСDA1B1C1D1 - параллелепипед, так как боковые ребра взаимно параллельны (дано).
а). В прямоугольнике АВСD диагонали равны и точкой пересечения делятся пополам. Следовательно, треугольник АОВ равносторонний и углы при основании равны 60°. => ∠ВАО = 60°.
Прямые А1В1 и АС - скрещивающиеся по определению: "Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными".
Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.
Так как АВ параллельна А1В1, то угол между скрещивающимися прямыми А1В1 и АС равен углу между пересекающимися прямыми АВ и АС. То есть это угол ВАО = 60°.
б) Аналогично, угол между скрещивающимися прямыми АВ и А1D1 равен углу между пересекающимися прямыми АВ и АD., то есть углу ВАD.
Поэтому, так как АВСD - прямоугольник, то искомый угол - ∠ВАD = 90°.
Обозначим скрещивающиеся прямые АВ и СD. Отметим на прямой АВ точку О.
1. Через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну. Проведем эту плоскость через точку О и прямую СD.
2. Соединим центр СD с точкой О. От концов СD проведем отрезки, параллельные и равные первой прямой. Обозначим их концы С₁ и D₁ соединим.
Мы получили две пересекающиеся прямые АВ и С₁D₁, через которые можно провести плоскость, и притом только одну. Проведенная таким образом плоскость параллельна прямой СD.