Рассмотрим цилиндр сверху и увидим круг, где осевое сечение - это диаметр круга, а другое параллельно ему. Рассмотрим треугольник, образованный этим сечением (обозначим длину за а) и двумя радиусами. Мы знаем также его высоту - половина радиуса. По теореме Пифагора: r² = (a/2)² + (r/2)² = a²/4 + r²/4 a²/4 = 3r²/4 a² = 3r² a = √3r Теперь возвращаемся к третьему измерению, рассматриваем весь цилиндр. Пусть его высота h, тогда площадь этого сечения будет: S = ah = √3rh А площадь осевого сечения (назовём S0): S0 = 2r*h Значит rh = S/√3 И S0 = 2*S/√3
Объяснение:
Разделим тождество на две части и решим каждого:
1+ tg×(180°- a)×sin×(90°-a)×sin a = cos²×(180°- a)
1) 1+ tg×(180°- a)×sin×(90°-a)×sin a
Сначало по формулам приведения переведем тригоном. функции:
1-tg a × cos a × sin a
Дальше,раскрываем тангенс по формуле: tg a =sin a/cos a :
1-sin a/cos a × cos a × sin a
Сокращаем cos a и получаем:
1-sin² a=> по осн. тригоном. тожд. => cos² a
2)cos²×(180°- a)
Воспользуемся формулой приведения:
cos²×(180°- a)= - cos²a
По основ. тригоном.тождеству sin²a+cos²a=1 =>cos²a=1-sin²a :
- cos²a = -(1-sin²a) = -1+sin²a=sin²a-1=cos²a
В первой части тождества получили: cos² a
И во второй части получили: cos² a
Поэтому:
cos² a=cos² a
Ч.т.д