1. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Доказательство:
Пусть О - середина отрезка АВ. Проведем ОН⊥b и продлим его до пересечения с прямой а.
ΔОАК = ΔОВН по стороне и двум прилежащим к ней углам (АО = ОВ, так как О - середина АВ, углы при вершине О равны как вертикальные, ∠ОАК = ∠ОВН по условию - накрест лежащие), значит
∠ОКА = ∠ОНВ = 90°.
Два перпендикуляра к одной прямой параллельны, значит
а║b.
2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
3. Если при пересечении двух прямых секущей сумма односторонних углов 180°, то прямые параллельны.
1) чертим Δ АВС -равносторонний. То есть все стороны одинаковы и равны 18 см. , все углы по 60 градусов; 2) точка В делит сторону АС пополам, то есть АВ1=СВ1=9см. 3) Проводим В1Д // ВС и В1Е // АВ; 4) рассматриваем Δ АВС и Δ АДВ1. Они подобны. Стало быть, все стороны одного пропорциональны сходственным сторонам другого. 5) Сторона АВ1 Δ АДВ1 вдвое меньше стороны АС Δ АВС и равна 18/2=9(см.) ; 6) и сторона В1Д вдвое меньше стороны ВС и равна 18/2=9(см.) ; 7) и сторона АД вдвое меньше стороны АВ и равна 18/2=9(см.) ; 8) Тогда ВД=АВ-АД=18-9=9(см) . 9) В итоге получается, что В1Е =9 см, ВЕ=9см, а сумма всех сторон четырёхугольника ВЕВ1Д равна 4*9=36см. 10 ответ: периметр образовавшегося четырёхугольника равен 36 см.
Признаки параллельности прямых.
1. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Доказательство:
Пусть О - середина отрезка АВ. Проведем ОН⊥b и продлим его до пересечения с прямой а.
ΔОАК = ΔОВН по стороне и двум прилежащим к ней углам (АО = ОВ, так как О - середина АВ, углы при вершине О равны как вертикальные, ∠ОАК = ∠ОВН по условию - накрест лежащие), значит
∠ОКА = ∠ОНВ = 90°.
Два перпендикуляра к одной прямой параллельны, значит
а║b.
2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
3. Если при пересечении двух прямых секущей сумма односторонних углов 180°, то прямые параллельны.