М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
18111960
18111960
04.07.2020 07:12 •  Геометрия

Вравнобедренном треугольнике угол при основании равен 72°,биссектриса этого угла равна √20.найдите стороны треугольника.

👇
Ответ:
ден7гв
ден7гв
04.07.2020

Это очень интересный треугольник - из него можно легко найти алгебраические выражения для тригонометрических функций углов, кратных 18 градусам.

Легко видеть (сосчитайте величину углов в этих треугольниках, они все будут либо 72, либо 36 градусов, и  в каждом есть пара равных углов), что биссектриса угла при основании делит треугольник на 2 равнобедренных, то есть биссектриса равна основанию треугольника и - одновременно - равна отрезку боковой стороны, от вершины, противоположной основанию, до конца биссектрисы. Итак, основание равно √20 = 2*√5.  Если обозначить боковую сторону за а, то из свойства биссектрисы

а/√20 = √20/(а - √20);

a^2 - 2*√5*a = 20;

(a - √5)^2 = 25;

a = √5 + 5; 

 

Легко видеть, что cos(72) = √5/(√5 + 5) = 1/(√5 + 1) = (√5 -1)/2 ;

4,4(78 оценок)
Открыть все ответы
Ответ:
Pasha2322
Pasha2322
04.07.2020
Так как в прямоугольном треугольнике угол между двумя катетами — прямой, а любые два прямых угла равны, то из первого признака равенства треугольников следует, что: 
если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны. 
Из второго признака равенства треугольников следует, что: 
если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны. 
Рассмотрим еще два признака равенства прямоугольных треугольников: 
если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны. 
Доказательство. Из теоремы о сумме углов треугольника следует, что в этих треугольниках два других острых угла также равны, поэтому они равны по второму признаку равенства треугольников, т. е. по стороне (гипотенузе) и двум прилежащим к ней углам. 
4,4(93 оценок)
Ответ:
bahyt061089
bahyt061089
04.07.2020
Так как в прямоугольном треугольнике угол между двумя катетами — прямой, а любые два прямых угла равны, то из первого признака равенства треугольников следует, что: 

если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны. 

Из второго признака равенства треугольников следует, что: 

если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны. 

Рассмотрим еще два признака равенства прямоугольных треугольников: 

если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны. 

Доказательство. Из теоремы о сумме углов треугольника следует, что в этих треугольниках два других острых угла также равны, поэтому они равны по второму признаку равенства треугольников, т. е. по стороне (гипотенузе) и двум прилежащим к ней углам.  
4,7(27 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ