М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
baba22
baba22
25.11.2020 00:20 •  Геометрия

Две стороны равнобедренного треугольника 5 см и 8 сантиметра. Каким может быть периметр этого треугольника? Желательно с решением. И не надо давать бессмысленные ответы, типа: ,,я не знаю" или ,,азаоцодчжвыт" дайте нормальный ответ•́ ‿ ,•̀​

👇
Ответ:
Aann1
Aann1
25.11.2020

5+5+8=18

8+8+5=21

4,4(25 оценок)
Ответ:
ibatulina03
ibatulina03
25.11.2020

две из трех сторон равнобедренного треугольника всегда одинаковые. например основа треугольника это 5 см, тогда две оставшиеся будут по 8 см (и наоборот)

1 вариант: 5+8+8 = 21 см

2 вариант: 8+5+5 = 18 см

4,7(90 оценок)
Открыть все ответы
Ответ:
малая555
малая555
25.11.2020

Какое из следующих утверждений верно?

1) Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой.

2) Смежные углы равны.

ЗАДАНИЕ №2.

Какое из следующих утверждений верно?

1) Треугольника со сторонами 1, 2, 4 не существует.

2) Смежные углы равны.

ЗАДАНИЕ №3.

Какие из следующих утверждений верны?

1) Один из углов треугольника всегда не превышает 60 градусов.

2) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.

3) Все диаметры окружности равны между собой.

ЗАДАНИЕ №4.

Какое из следующих утверждений верно?

1) Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов.

2) В тупоугольном треугольнике все углы тупые.

3) Если две стороны и угол одного треугольника равны соответственно двум сторонам и углу другого треугольника, то такие треугольники равны.

ЗАДАНИЕ №5.

Укажите номера верных утверждений.

1) Любые три прямые имеют не более одной общей точки.

2) Если угол равен 120°, то смежный с ним равен 120°.

3)Если две прямые перпендикулярны третьей прямой, то эти две прямые параллельны.

ЗАДАНИЕ №6.

Укажите номера неверных утверждений.

1) При пересечении двух параллельных прямых третьей прямой сумма накрест лежащих углов равна 180°.

2) Если две прямые перпендикулярны третьей прямой, то эти две прямые параллельны.

3) Если угол равен 47°, то смежный с ним равен 153°.

ЗАДАНИЕ №7.

Укажите номера верных утверждений.

1) Смежные углы равны.

2) Любые две прямые имеют ровно одну общую точку.

3) Если угол равен 108°, то вертикальный с ним равен 108°.

ЗАДАНИЕ №8.

Какие из данных утверждений верны? Запишите их номера.

1) Каждая из биссектрис равнобедренного треугольника является его медианой.

2) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.

3) Через любые две точки можно провести прямую.

ЗАДАНИЕ №9.

Укажите номера верных утверждений.

1) Через любую точку проходит не менее одной прямой.

2) Если при пересечении двух прямых третьей прямой соответственные углы равны 65°, то эти две прямые параллельны.

3) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы составляют в сумме 90°, то эти две прямые параллельны.

ЗАДАНИЕ №10.

Какие из следующих утверждений верны?

1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы составляют в сумме 90°, то эти две прямые параллельны.

2) Если угол равен 60°, то смежный с ним равен 120°.

3) Если при пересечении двух прямых третьей прямой внутренние односторонние углы равны 70° и 110°, то эти две прямые параллельны.

4) Через любые три точки проходит не более одной прямой.

ЗАДАНИЕ №11.

Укажите номера верных утверждений.

1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части.

2) Сумма смежных углов равна 180°.

3) Любая высота равнобедренного треугольника является его биссектрисой.

ЗАДАНИЕ №12.

Укажите номера верных утверждений.

1) Любая биссектриса равнобедренного треугольника является его медианой.

2) Если два угла треугольника равны, то равны и противолежащие им стороны.

3) Внутренние накрест лежащие углы, образованные двумя параллельными прямыми и секущей, равны.

4,4(97 оценок)
Ответ:
roma1xayatov
roma1xayatov
25.11.2020
Угол между двумя пересекающимися хордами равен полусумме высекаемых ими дуг.
Значит градусная мера дуги АВ плюс градусная мера дуги СD равна 120°.
Следовательно, сумма центральных углов <AОВ+<CОD=120°, а 0,5<AOB+0,5<COD=60°.
Пусть <AOB=α, a <COD=β тогда α/2+β/2=60°.
Длина хорды равна L=2R*Sin(α/2), где α - центральный угол, опирающийся на дугу, стягиваемую хордой.
В нашем случае:
11=2R*Sin(α/2) и 41=2R*Sin(β/2). Разделим первое уравнение на второе.
11/41=Sin(α/2)/Sin(β/2). Но β/2=60°-α/2. Тогда
11/41=Sin(α/2)/Sin(60-α/2) (1).
Пусть теперь α/2=γ (для простоты написания).
Далее сплошная тригонометрия.  
По формуле приведения: Sin(60°-γ)=Sin60°*Cosγ-Cos60°*Sinγ или
Sin(60°-γ)=(√3/2)*Cosγ-(1/2)*Sinγ. Подставим это значение в уравнение (1):
11/41=Sin(γ)/[(√3/2)*Cosγ-(1/2)*Sinγ] или
(11√3/2)*Cosγ-(11/2)*Sin(γ)=41Sin(γ) или (11√3)*Cosγ=93Sin(γ) (2).
Мы знаем, что Cos²γ+Sin²(γ)=1.
Тогда, возведя уравнение (2) в квадрат, получим:
363*(1-Sin²(γ))=8649*Sin²(γ). Отсюда Sin²(γ)=363/9012≈0,04, а Sin(γ)=0,2.
Помня, что мы приняли α/2=γ, имеем: 11=2R*Sin(γ) или R=11/2*0,2=27,5.
ответ: R=27,5.
4,8(39 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ