М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mashanemiro110p08m38
mashanemiro110p08m38
04.12.2022 18:56 •  Геометрия

Впараллелограмме abcd сумма площадей треугольника abc abd равна 10 смx^{2} в квадрате. найдите площадь параллелограмма.

👇
Ответ:
KalinaNatalia
KalinaNatalia
04.12.2022
Диагональ параллелограмма делит его на две равные части.
S (ABCD)=S(ΔABC)+S(ΔABD)
Т.к. по условиям задачи S(ΔABC)+SΔ(ABD)=10 см², значит
S (ABCD)=S(ΔABC)+SΔ(ABD)=10 (см²)
ответ: площадь параллелограмма равна 10 см²
4,6(19 оценок)
Открыть все ответы
Ответ:
coldenye
coldenye
04.12.2022

найдем координаты середины диагоналей четырехугольника ABCD:

 

середина диагонали АС

x=(0+5)/2=2.5

y=(1+1)/2=1

(2.5;1)

 

середина диагонали BD

x=(4+1)/2=2.5

y=(3+(-1))/2=1

(2.5;1)

 

таким образом диагонали четырехугольника пересекаются в точке, что делит их пополам, поэтому за признаком парарлелограмма четырехугольник АВСD - парареллограм

 

найдем длины диагоналей

AC=((5-0)^2+(1-1)^2)=5

BD=((4-1)^2+(-1-3)^2)=5

 

диагонали параллелограма ABCD равны АC=BD, за признаком прямоугольника ABCD- прямоугольник. Доказано

Подробнее - на -

Объяснение:

4,6(70 оценок)
Ответ:
Afakado
Afakado
04.12.2022

"египетский" треугольник, подобный (3,4,5). Стороны 9,12,15. Расстояние от основания медианы к гипотенузе (то есть от середины гипотенузы) до катета 12 равно 9/2. А точка пересечения медиан на треть медианы ближе к вершине перяого угла, то есть расстояние от неё до катета 12 составит (2/3)*(9/2) = 3.

 

А можно и так. Медиана к гипотенузе равна 15/2, а точка пересечения медиан лежит на расстоянии (2/3)*(15/2)  = 5 от прямого угла. При этом, если опустить перпендикуляр из этой точки на катет (да любой :)) в данном случае - на катет 12), то поучится ОПЯТЬ "египетский" треугольник, причем самый настоящий - (3,4,5). Доказательство этого совершенно очевидного факта такое - медиана образует с катетами углы, равные углам треугольника, поскольку разбивает треугольник на два равнобедренных. Отсюда следует подобие построенного треугольника исходному.

Ну, вот так само собой и получилось, что расстояние от точки пересечения медиан до катетов 3 и 4. Нужное по задаче расстояние 3.

 

4,6(8 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ