Задачу можно решить двумя обычным и через sin))) Какой вам лучше, выбирайте сами.
Обозначим параллелограмм, как АВСД
ВН - высота, опущенная на сторону АД
АН = 4 см, НД = 2 см.
АД = АН + НД = 4 + 2 = 6 см.
параллелограмма = АД × ВН
Угол В = 135 - 90 = 45 градусов (т.к. ВН - высота, следовательно, она опущена под углом 90 градусов)
Рассмотрим треугольник АВН. Угол ВНА = 90 градусов, АВН = 45 градусов, следовательно угол ВАН = 180 - 90 - 45 = 45 градусов. Значит треугольник АВН - равнобедренный
Следовательно, ВН=АН=4 см.
S параллелограмма = 6 × 4 = 24
параллелограмма = АВ × АД × sin a
Sin а = 45 градусов = √2 делённое на 2
АВ² = √ВН² + АН² = √4² + 4² = √32
S параллелограмма = √32 × 6 × √2 делённое на 2 = 24
Объяснение:
1. Пусть бок сторона А (это меньшая сторона), длина или основание В,
каждая биссектриса образует равнобедренный треугольник со стороной А, т.е. В делится на три равные части сумма двух из них равна А
Вывод В = 1,5 А или А = 2/3 В
2. у треугольников, куда входят стороны указанные пунктиром равные другие стороны (длины сторон пар-ма у каждого), осталось доказать что углы между ними тоже равны, помня что у равнобедренных = 60, а у пар-ма противополож равны, а смежные в сумме дают 180 ...
т.е у двоих а+60, а у третьего 360 - (180 - а) - 120 = 60 + а, т.е треугольники равны ...