2.66, Сторона ромба 241 м, высота 120 м. Найдите улы. 2,56, Упростите выражения: 1) 1 - sin'a; 2) 1 - cos?а; 3) (1 - cos a)(1 + cos a); 4) 1+sin'a + cosa; 5) sin a-sin a cos' a; 6) cos 45° tg 45°; 7) sin 85° tg 5°; 8) 1-sin 18°cos 72°; 2 cos 29 9) sin 88° + соя 20 я 10) sin a + cos a + 2sin? a. cos? a; 11) tg'a (2cos at sin' a-1); 12) cos? a + tg a cos a; 13) tg'a-sing tg a; 14) (1-sin a)(1 + sin a); 15) tg 5° tg 25° tg 45° tg 65° tg 85°.
Углы ВСО и DAO - накрест лежащие углы при пересечении двух прямых ВС и AD секущей АС. По условию они равны, значит, ВС II AD. Треугольники ВОС и DOA равны по стороне и двум прилежащим к ней углам (второй признак равенства треуг-ов): - <BCO=<DAO по условию; - <BOC=<DOA как вертикальные углы; - АО=СО по условию. У равных треугольников равны и соответственные стороны ВО и DO. Рассмотрим треуг-ки ВОА и DOC. Они равны по двум сторонам и углу между ними (первый признак равенства треуг-ов): - ВО=DO как только что доказано; - АО=СО по условию; - углы ВОА и DОС равны как вертикальные.
Углы ВСО и DAO - накрест лежащие углы при пересечении двух прямых ВС и AD секущей АС. По условию они равны, значит, ВС II AD. Треугольники ВОС и DOA равны по стороне и двум прилежащим к ней углам (второй признак равенства треуг-ов): - <BCO=<DAO по условию; - <BOC=<DOA как вертикальные углы; - АО=СО по условию. У равных треугольников равны и соответственные стороны ВО и DO. Рассмотрим треуг-ки ВОА и DOC. Они равны по двум сторонам и углу между ними (первый признак равенства треуг-ов): - ВО=DO как только что доказано; - АО=СО по условию; - углы ВОА и DОС равны как вертикальные.
Треугольники ВОС и DOA равны по стороне и двум прилежащим к ней углам (второй признак равенства треуг-ов):
- <BCO=<DAO по условию;
- <BOC=<DOA как вертикальные углы;
- АО=СО по условию.
У равных треугольников равны и соответственные стороны ВО и DO.
Рассмотрим треуг-ки ВОА и DOC. Они равны по двум сторонам и углу между ними (первый признак равенства треуг-ов):
- ВО=DO как только что доказано;
- АО=СО по условию;
- углы ВОА и DОС равны как вертикальные.