Объяснение:
Задача 11:
угол A=С, следовательно этот треугольник равнобедренный
BD=1/2AB, значит угол A=30
тогда угол В=30 , т. к угол А=С
тогда угол В равен: 180-(30*2)=180-60=120.
Задача 12:
ВА=ВС, значит угол А=С
угол В=120
тогда угол А=(180-120)/2=30
угол НВА=180-120=60
угол ВНА=90
тогда угол ВАН=30
АС=4 см
если из угла АВС проведем медиану ВМ, то она будет и биссектрисой, и высотой, а значит
угол АНМ будет равен 60,
тогда получается, что треугольники АВМ и НВА равны, а значит АН=АМ=2 см (т. к ВМ медиана, значит делит сторону АМ на две равные части)
Поместим заданные точки в прямоугольную систему координат Точкой А в начало, АД по оси Ох, АВ по оси Оу.
А(0;0;0), S(0; 0; 4), С(8;8;0), О(0; 4; 0).
Определяем уравнение плоскости ASC по трём точкам.
Пусть (х1, х2, х3), (у1, у2, у3) и (z1, z2, z3) – координаты первой, второй и третьей точки соответственно. Тогда уравнение плоскости определяется из выражения: (x-x1)*(у2-y1)*(z3-z1) – (x-x1)*(z2-z1)*(y3-y1) – (y-y1)*(x2-x1)*(z3-z1) + (y-y1)*(z2-z1)*(x3-x1) + (z-z1)*(x2-x1)*(y3-y1) – (z-z1)*(y2-y1)*(x3-x1) = 0.
Подставив координаты точек, получаем в виде Ax + By + Cz + D = 0:
32x - 32y + 0z + 0 = 0, или, сократив на 32: х - у = 0. А = 1, В = -1.
Переходим к вектору SO.
Его координаты: (0-0=0; 4-0=4; 0-4 = -4). SO(0; 4; -4).
Находим скалярное произведение SO на ASC: 0*1 + 4*(-1) + 0*(-4) = -4.
Длины векторов: |SO| = √(0² + 4² + (-4)²) = √32 = 4√2.
Нормального вектора плоскости |ASC| = √(1² + (-1)² + (0)²) = √2.
Теперь можно перейти к ответу.
sina = |-4|/(4√2*√2) = 1/2. а = 30 градусов.
ответ: угол между прямой SO и плоскостью ASC равен 30°.
если из точки В опустить перпендикуляр на диагональ АВ1 то это и будет искомое расстояние назовем его ВН. очевидно что ВН это половина диагонали квадрата ВВ1А1А . вся диагональ по тю пифагора равна корню из 2. а ВН равна половине корня из 2.