Пусть угол A равен 2a, угол С равен 2с, тогда 60+2a+2с = 180 (градусов), то есть a+с = 60 (градусов). Пусть М и O - центр вписанной и описанной окружности соответственно. Точка М лежит на пересечении биссектрис углов треугольника ABC, поэтому угол AМC= 180 - (a+с) = 120 (градусов). Угол AOC - центральный, поэтому он в два раза больше угла B, то есть равен 120 (градусов). Таким образом, углы AМC и AOC равны. Значит, сторона AC видна из точек М и O под одним и тем же углом, равным 120 (градусов). Следовательно, указанные точки A, C, М и O лежат на одной окружности.
Решение: Объём воды в сосуде находится по формуле: V=Sосн.*h- где S - площадь основания; h- уровень воды Из первой формулы h=V : Sосн. S=πR² или: h=V/ πR² Если перелить воду в другой сосуд у которого радиус меньше в 2 раза (R/2) уровень воды равен: h=V : π*(R/2)²=V : π* R²/4=4V/ πR² Вычислим во сколько раз увеличится уровень воды при переливании воды в другой сосуд: 4V/ πR² : V/πR²=4V* πR²/πR²*V=4 (раза) Отсюда уровень воды, равный 15см в другом сосуде увеличится в 4 раза, следовательно в другом сосуде он будет: 15см*4=60см