1. если провести из угла С- прямого высоту СД (например), то рассматривая прямоугольный треугольник СДВ, где СВ- гипотенуза и =6 см (по условию), а угол В 30 град (т.к. по условию в треугольнике АСВ, АВ=2АС, и катет лежащий против угла в 30 град. равет 1\2 гипотенузы)
2. СД в треугольнике СДВ лежит против угла в 30 град. и равен 1\2 СВ=3 см.
3. значит высота треугольника АВС является радиусом окружности с центром в точке С и АВ по касательной проходит окружность в т. Д
нарисовала- все понятно, написала- жесть)))
Объяснение:
По второму признаку равенства треугольников: "Если сторона и два прилежащих к ней угла в одном треугольнике равны стороне и двум прилежащим к ней углам во втором треугольнике - то такие треугольники равны".
Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы
Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов)
А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников.
В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным.
Утверждение доказано.
МОЖНО ЛУЧШИЙ ОТВЕТ!