Раз уж первую задачу решили правильно, её расписывать не буду. 2) В прямоугольном треугольнике катет равен среднему пропорциональному гипотенузы и проекции этого катета на гипотенузу. Другими словами, квадрат катета равен произведению гипотенузы на проекцию катета. АВ²=АН·АС=10·40=400, АВ=20 - это ответ.
3) Точка, равноудалённая от сторон треугольника является центром вписанной в него окружности. Он, в свою очередь, лежит на пересечении биссектрис треугольника, значит АО - биссектриса угла АВС. ∠АВС=2∠АВО=2·39=78°. В тр-ке АОС ∠ОАС+∠ОСА=(∠ВАС+∠ВСА)/2=(180-∠АВС)/2=(180-78)/2=51°. ∠АОС=180-(∠ОАС+∠ОСА)=180-51=129° - это ответ.
PS. Так как точка О не является центром описанной вокруг треугольника окружности, нельзя говорить о том, что угол АВС вписанный и, тем более, что угол АОС центральный и что он равен двум вписанным.
Диагонали прямоугольника в точке пересечения делятся пополам. Отсюда следует, что расстояние от точки пересечения до сторон прямоугольника есть половины длины и ширины прямоугольника (т. к расстояния от точки пересечения до одной и другой стороны - это высоты треугольников, опирающихся на длину и на ширину прямоугольника) . => найти высоты равнобедренных треугольников тр. АВС = тр.АСД О=точка пересечения диагоналей ОН-высота АО=1/2АС значит ОН/СД=1/2 СД=6 см ОН=3см
2) В прямоугольном треугольнике катет равен среднему пропорциональному гипотенузы и проекции этого катета на гипотенузу. Другими словами, квадрат катета равен произведению гипотенузы на проекцию катета.
АВ²=АН·АС=10·40=400,
АВ=20 - это ответ.
3) Точка, равноудалённая от сторон треугольника является центром вписанной в него окружности. Он, в свою очередь, лежит на пересечении биссектрис треугольника, значит АО - биссектриса угла АВС. ∠АВС=2∠АВО=2·39=78°.
В тр-ке АОС ∠ОАС+∠ОСА=(∠ВАС+∠ВСА)/2=(180-∠АВС)/2=(180-78)/2=51°.
∠АОС=180-(∠ОАС+∠ОСА)=180-51=129° - это ответ.
PS. Так как точка О не является центром описанной вокруг треугольника окружности, нельзя говорить о том, что угол АВС вписанный и, тем более, что угол АОС центральный и что он равен двум вписанным.