1)у квадрта - 4
2)у полуокружности - 1
3) у ромба - 2
4)у равностороннего треугольника - 3
3)11
Объяснение:
АВСДА1В1С1Д1 - усеченная пирамида , в основаниях квадраты АВСД со стороной =10, А1В1С1Д1 со стороной=2, ОО1-высота пирамиды=7, АС=корень(АД в квадрате+СД в квадрате)=корень(100+100)=10*корень2, А1С1=корень(А1Д1 в квадрате+С1Д1 в квадрате)=корень(4+4)=2*корень2,
рассматриваем АА1С1С как равнобокую трапецию, АА1=СС1, проводим высоты А1К и С1Н на АС, КА1С1С-прямоугольник А1С1=КН=2*корень2, А1К=С1Н=ОО1=7-высота, треугольник АА1К=треугольник НС1С как прямоугольные по гипотенузе и катету, АК=СН=(АС-КН)/2=(10*корень2-2*корень2)/2=4*корень2
АН=АК+КН=4*корень2+2*корень2=6*корень2, треугольник АС1Н прямоугольный, АС1-диагональ пирамиды=корень(АН в квадрате+С1Н в квадрате)=корень(72+49)=11
Опустим перпендикуляр на нижнее большее основание трапеции из вершины тупого угла. Получим высоту, которая равна меньшей боковой сторое, т.е. √3. Перпендикуляр отколол от трапеции прямоугольный треугольник, в котором острые углы 30° и 60°. Гипотенуза, т.е. большая боковая сторона в трапеции в два раза больше, чем катет против 30°, а другой катет равен √3. По если катет х, то гипотенуза 2х, а второй катет √3. Найдем х. По теореме ПИфагора 4х²-х²=3. Т.к. х-положит., то х=1. Значит, нижнее основание 4=1=5, а верхнее 4, высота трапеции √3. найдем площадь, как произведение полусуммы оснований на высоту ((4+5)*√3)/2=4,5√3 9см²)
1) у квадрата:4
2) у полуокружности: нет (насколько помню)
3) у ромба: 2
4) у равностороннего треугольника: 1